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Table 1. Global burden of VBDs.

Data source Estimeated cases worldwide in Estineated global all-age DALYs in  Estimated all-age deaths worldwide
_ | 2017 (thousands [95% C1]) 2017 (thousands [95% C1]) im 2017 (thousands [95% CI])
Malaria World Malarks Report | 209,000 [ 203 (00 - 262 (HHY) Mot stated 435
2018 |5
Global Burden of 08768 (170,214=25T 506 A5, 000 {31, TO0=61 000 G198 (440, 1 -839.5)
| Disease 2017 [6,7, 9] | |
Dengue Cilobal Burden of VO, FTD (63 T5%=]1 58 570) _ 2000 {0 4630= 5, 970) | 40,5 (1 T 6=49.8)
CL and mucocutancous | Disease U7 U6, 7.9] 4 160 6 (3,560.7-4,992.8)" 264 (172-389)
leishmaniasis
VL 106 (B.2-16.5)" 311 (L.O2-Z2 440) | 75 (0.0-34.5)
Vellow fever 974 (28.0-251.7) | 314 (67.2-900) 4.8 (1.0-13.8)
Chagas discase G970 (5,248 5-7 243 9)° _ 22 (210=261) | T8 (7.5-8.6)
HAT 49(1.3=198)" T (154=287) L (0. 3=4.9)
LF Gb G234 (59 TH,2=T0500, 1) U500 (753<2 160) :
(knchocerciasis 209381 (12882 3-37.X27.7) U, 540 (655-2 370) ]
Trachoma I EIR9 {2842 6~-5.1352)" 303 (202 -425]
Lika virus discase _ 22522 (| 1.659.6-3.0497.5) 224 (127 -4.466) 0.0 (0= 1 )
*Frevalence,

Abbreviations: CL, cutaneous leishmaniasis; DALY, disability-adjusted life year; HAT, human African trypanosomiasis; LF, lymphatic filariasis VBD, vector-borne
disease: VI, visceral keishimaninsis
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Complexity of VBDs




Figure 1 Diagrammatic representation of “expanded” vectorial capacity (VCAP) Model.
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Fig 2. Age-structured vectorial capacity
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Figure 3. Diversity of ways in which non-genetic factors may influence mosquito competence for malaria parasites.
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Table 2. Existing evidence for non-genetic influences on mosquito competence for malaria parasites.

Lefevre T, Vantaux A, Dabiré KR, Mouline K, Cohuet A (2013) Non-Genetic Determinants of Mosquito Competence for Malaria Parasites. PLOS Pathogens 9(6): e1003365.
https://doi.org/10.1371/journal.ppat.1003365 https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1003365
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Figure 4. Complex environmental mediation of mosquito competence for malaria parasites.
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Figure 5. Disentangling the influence of host genotype, parasite genotype, environment, and interactions.
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Mosquito competence for malaria is a complex
phenotypic trait determined by host and parasite genetic
factors, non-genetic environmental factors and
interactions between these factors (A). For example, An.
gambiae, the primary vector of malaria in Africa, displays
a wide range of competence for a given parasite
genotype (8.1, [118]); and a given mosquito strain also
varies in its susceptibility to different Plasmodium
isolates (B.2, [88]). Some studies have also demonstrated
the existence of vector-parasite genetic interactions (B.3,
see also glossary [16,18]). Competence of a given
mosquito genotype for a given parasite genotype can
vary depending on environmental conditions (8.4). Most
of the works reviewed here illustrate this situation (table
1). Environmental influences on competence can also
vary depending on host genotype (B.S, G, x E), parasite B
genotype (8.6, G, x E) or both (8.7, G, x G, x E). Such
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hence affecting coevolutionary dynamics of mosquito- g o ¢ ..&a““wse type
parasite interactions and potentially disease dynamics ?:l'\lot described yet
[21,22). We are aware of only two studies which have

investigated G x E interactions in mosquito-malaria 2. Gymain effect . |5. G,xE | 7. GyxG,xE

associations [42,43). Both found no G x E effects on
competence. However, one cannot rule out the
possibility that these results stem from the utilization of
unnatural laboratory-based model systems in which host
and parasite do not share an evolutionary history. Finally,
there can be E x E interactions whereby the effects of a
given environmental factor differ depending on other
environmental factors (B.8). For example, whereas larval
exposure to pesticides increases Ae. gegypti competence
for arboviruses at high temperature, it has no effect
when larvae are reared at low temperature [84].
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Fig. 6. Natural and technical confounding factors related
to arbovirus vector competence studies in Aedes aegypti.
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Fig. 7. Interaction of different factors on VBDs
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Fig 8. Impact of transmission cycles and vector competence on global expansion and emergence of arboviruses
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Fig 9. Impact of transmission cycles and vector competence on global expansion and emergence of arboviruses
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Table 3 Reservoir hosts of human leishmaniasis in some endemic countries [8,24,27,35,36).

Region Countries Reservoir hosts
North Africa, central and west Asia Dog, human, rodent
Rodents, dog, domestic animals, bats,
Ethiopia, Kenya human, rock hyrax
Indian subcontinent, (India, Nepal, Bangladesh) and east Africa Dog, human, rock hyrax, rodent
Mediterranean basin, central, west Asia and west Africa Dog, fox, rodent, human
Old world Europe Dog, fox
Dog, cats, rodent, marsupials, anteater,
Argentina, Belize, Bolivia, Brazil, Colombia, Costa Rica, Dominican, Ecuador, EI Salvador,  fox, monkey, coati, sloth, armadillo,
French Guyana, Guadeloupe, Guatemala, Guyana, Honduras, Martinique, Mexico, Nicaragua, |  porcupines, ~ kinkajou, raccoon, red
New world USA, Venezuela, Paraguay, Peru, Surinam, Panama, squirrel,




Figure 10. A system dynamics approach to
understanding mosquito-borne disease risk



Figure 11. Percentage change in dengue cases and malaria deaths and annual mean land
temperature change between 1993 and 2013
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Figure 12. Possible impacts of climate change on changing risks from vector-
borne diseases illustrated using possible impacts on Canada as an example
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Figure 13. Direct effects of climate and weather on vector populations and vector-borne pathogen transmission illustrated
by potential effects on West Nile virus transmission
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Fig 14. A short history of vector control.

1 ’ 1
: . Vector control dominated by Vector control predominantly
environmenial management insecticide based J
DESscovery
of DDY in
earty 1930
Concept of “speoeci Pan-Acmnerican Sanitacy
--n‘:tauor::' ._.557,; Bureau oradicoate Aodes contral
envircarmental managaerment A oyt from large e fORON
 pans s T8 S 2 rgely reactiv
dewveloped in Mal'aysla and :lide. scale uso o‘l (onvirgwrhz::tal m:‘:;ef,:,“. and failing to
ndonosia mwironmenta larvicide, later IRS) COntrod viral

maanagermont - . epidemics

and Iarviciding
e.g. Zambian Copperbeit, —
Tennessee Vabey @ "‘;

Eonwviromsrmootosl

TESarTogoOrmort Further development of

Doainst yollow fewvers | GMEP usng 1IRS  tramps ancd toaargets
and mafarrias in Cutba partially sucocessful .e . Tany Targetsgor
and Panama (Gorgas) Dart Ister abandoned  Gasmybeamam HAT
{1969)

» g
Emriy enswvironrmental Efimnination of | i

CTlimica? trialis
of 1

T ?
Efirminmnation ©of malarna
Mode of Coopaeramtive
transmission Yetlow Foever from Ewrope using Southormn Cono
Of sralionic csvd Sorwvice agasnst rrvental rmanagernent Initimntive
othwer WBDsS yeaellow favear and Bargely ussing I1IRS
IcfentifTicas malaress dn Braxcil
{enwvewronmental —— =
rmanagerment ¢ b
and anscSdang) IRS for Lesshman:iasis < = Major
. reduaction
3 : =
Game destruction, @ :‘.ﬁ"ice us:.\g‘
bush clearing and early Near elimination of ITN s and IRS
tta.::::-rgot- for onchocerciasis
s coNirod from Wes frico
Grownc and aoriasl (m;,,tg;\
M spraying of insecticices
T for tsotso control -

Wilson AL, Courtenay O, Kelly-Hope LA, Scott TW, Takken W, et al. (2020) The importance of vector control for the control and elimination of vector-borne diseases. PLOS Neglected Tropical
Diseases 14(1): e0007831. https://doi.org/10.1371/journal.pntd.0007831 https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0007831



https://doi.org/10.1371/journal.pntd.0007831
https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0007831

Table 4. Categories and examples of vector control methods [11].

Chemical | Immature | Chemical larvicides
i J.\-dull | 1TNs

T Insecticide-treated materials for personal
protection

IRS

| Space spraying

t lmc-:ti;idgi treatment of Babﬁa
Insecticide-treated cattle
Insecticide-treated traps and targets

' Topical repellent

| . Spatial repellent
Nonchemical Immature Microbial larvicides
Predator species o
Habitat modification, ic., 3 permanent
change of land andlor water

Habitat manipulation, i.c., a recurrent
activity

; chuhlory measures

| Adult - House improvement and screening

\
Removal trapping

| Contact pesticides affecting insect nervous system (c.g., temcphos) or endocrine system (insect
| growth regulators, e.g., pyriproxyfen)

Pyrethroid-treated ['TNs or combination FTNs (e.g., pyrcihroéd plus synergist piperonyl

| butoxide) for malaria, LF, and leishmaniasis control

Insecticide-treated clothing for workers and mobile populations

. Spraying of fcﬁduai ms«ﬁadé (l)pkady ddm pyrﬂﬁmuis. <carbamates, or
| organophosphates) indoors for malaria and Aedes-borne disease control

Aircraft, vehicle or hand-held space spraying for dengue epidemic and other Aades-bome

| discase control o - - 7
| Focal, perifocal, ground, or acrial insecticide spraying
. Pour-on or spot-on pyrethroids for control of tsetse

Targets for control of HAT and insecticide-treated adulticidal oviposition traps for Aedes-

| borne discases

Chemicals (c.g.. NN-diethyl-meta-toluamide [DEET], picaridin) applied to the sKin to reduce

| vector biting

| Transfluthrin/metafluthrin passive emanators or coils
| Bacillus thuringiensis var. israclensis, B. sphaericus

| Predatory fish or invertebrates

Drainage of surface water, land r«hmﬁhon and ﬁlliﬁg, and fovrragc of hrgf waler storage
containers (or complete coverage of water surfaces) with a material that is impenetrable to

| mosquitoes, such as expanded polystyrene beads

Water-level manipulation, exposing habitats to the sun (depending on the ccology of the
vector), flushing of streams, drain clearance, and source reduction, induding rubbish disposal
and regular emptying and cleaning of domestic containers (e.g.. lowerpots, animal drinking

| water troughs)
. Removal of man-made aquatic habitats and appropriate waste disposal
| Closing eaves, door and window screening

Solar-powered mosquito trapping system for malaria control and sticky adulticidal oviposition

| traps for Aedes-borne discases

Abbreviationss HAT, human African trypanosomiasis; IRS, indoor residual spraying: ITN, insecticide-treated bed net: LF, lymphatic filariasis

hitps.//dot.oeg/10.1371 journal pntd 00078311002
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Table 5. Historical overview of notable vector control programmes and their effects.
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