

Giardia duodenalis in Rodents: A Global Systematic Review and Meta-Analysis

Tahereh Davoodi ¹	Jalil Feizi ^{2,3}	Ka	mbiz Karimi ⁴		Mohammad Reza Mohammadi ⁵	Ali Pouryousef ⁶	
Esfandiar Azizi ^{2,7}	Ali Asghari ⁸ 🕞		Fariba Shadfar	2,9			

¹Department of Medical Science, Kaz.C., Islamic Azad University, Kazerun, Iran | ²Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran | ³Department of Internal Medicine, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran | ⁴Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran | ⁵Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran | ⁶Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran | ⁷Department of Immunology, School of Medicine, Ilam University of Medical Sciences, Qazvin, Iran | ⁸Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran | ⁹Department of Dermatology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran

Correspondence: Ali Asghari (asghari3@yahoo.com) | Fariba Shadfar (faribashadfar03@gmail.com)

Received: 16 November 2024 | Revised: 7 July 2025 | Accepted: 19 July 2025

Funding: The authors received no specific funding for this work.

Keywords: assemblage | Giardia duodenalis | meta-analysis | molecular prevalence | rodents | systematic review

ABSTRACT

Background: *Giardia duodenalis* (also known as *G. lamblia* or *G. intestinalis*) is a globally distributed protozoan with zoonotic potential. This systematic review and meta-analysis aimed to determine the global molecular prevalence and genotypic distribution of *G. duodenalis* in rodents, based exclusively on studies using molecular diagnostic techniques.

Methods: A comprehensive literature search up to 15 October 2024, identified 23 eligible studies encompassing 54 datasets and 5971 rodent samples from 10 countries across three continents. Prevalence estimates were pooled using a random-effects model, and heterogeneity was assessed via the I^2 statistic. Assemblage and sub-assemblage distributions were analysed across rodent species and geographic regions.

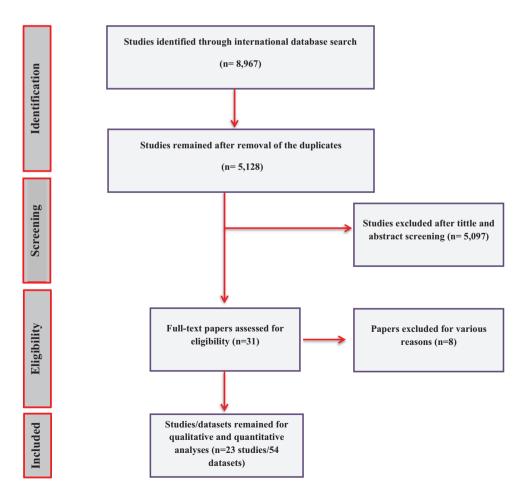
Results: The pooled molecular prevalence of *G. duodenalis* in rodents was 7.4% (95% CI: 4.8–11.4%), with chinchillas (36.9%) and porcupines (23.1%) showing the highest infection rates. Rodents were found to harbour six assemblages (A–E, G) and four sub-assemblages (AI, AII, BIII, BIV) of *G. duodenalis*, with marked geographic variation. The highest pooled prevalence was observed in Europe (17.9%; 95% CI: 9.8–30.5), where assemblages C, D, G, and most occurrences of E, B, and A were reported. Assemblages C and D were entirely absent in Asia. In contrast, most reports of the rodent-specific assemblage G originated from Asia. South America (represented solely by Brazil) reported only assemblage A. China contributed the largest dataset (n = 25) and sample size (n = 4009), exhibiting high genetic diversity (A, B, E, G). Belgium also showed notable diversity (A, B, C, E), with assemblage B being the most prevalent in both countries. Assemblage D was found exclusively in Romania, while assemblage C was reported only in Belgium and Italy. Notably, the highest assemblage diversity was observed in chinchillas (five: A–E), squirrels (four: A, B, E, G), and rats (three: A, B, G).

Conclusions: Although various rodent species, especially chinchillas, mice, porcupines, rats, squirrels, and voles, carry *G. duodenalis* zoonotic assemblages (A and B), the overall molecular prevalence in rodents remains relatively low. Due to significant

Tahereh Davoodi and Jalil Feizi contributed equally in this study.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2025 The Author(s). Veterinary Medicine and Science published by John Wiley & Sons Ltd.


limitations in sampling design, methodological heterogeneity, limited ecological data, and unknown host health status, current evidence is insufficient to confirm rodents as major zoonotic reservoirs. Standardised, large-scale molecular studies are needed to clarify the epidemiological role of rodents in *G. duodenalis* transmission.

1 | Introduction

Giardia duodenalis (also known as G. lamblia or G. intestinalis) is a flagellated protozoan parasite that colonises the gastrointestinal system of various mammalian species, including humans (Adam 2001). It is considered one of the primary protozoan agents responsible for parasitic diarrhoea globally and has been categorised as a neglected disease by the World Health Organization due to its substantial impact on public health, especially in low-resource regions (Savioli et al. 2006; Hatam-Nahavandi et al. 2025).

This parasite is widely recognised for causing numerous foodborne and waterborne disease outbreaks across the globe, with the extent of infection varying significantly among different regions. Its transmission mainly occurs through the faecal-oral route, typically via ingestion of food or water contaminated with cysts, or through direct contact with infected individuals or animals (Mohammed Mahdy et al. 2008; Ayed et al. 2024). Sequence investigations of a number of genetic markers, such as small-subunit rRNA (*SSU rDNA*), beta-giardin (*bg*), triosephosphate isomerase (*tpi*), and glutamate dehydrogenase (*gdh*), revealed that *G. duodenalis* is classified into at least eight genetic subgroups (assemblages A-H), each of which has distinctive host preferences (Huey et al. 2013; Wang et al. 2014; Yu et al. 2019; Heng et al. 2022; Tijani et al. 2023). Humans and other mammals are home to zoonotic assemblages A and B; canids, hoofed animals, cats, rodents, and pinnipeds are home to assemblages C/D, E, F, G, and H, respectively (Ryan et al. 2021). Moreover, rodents can harbour distinct species such as *G. muris*, *G. microti*, and *G. cricetidarum*, which can be differentiated from *G. duodenalis* (Ryan and Zahedi 2019; Argüello-García and Ortega-Pierres 2021; Lalle and Caccio 2023).

Among the diverse range of animal hosts, rodents pose a notable public health concern due to their widespread presence, frequent proximity to human dwellings, and remarkable ability to

FIGURE 1 | Flowchart depicting the process of included studies in the present systematic review.

evecke, 2011 (eronesi, 2012 ernandez-Alvarez, 2014a ernandez-Alvarez, 2014b hao, 2015a hao, 2015b	Event rate 0.262 0.298 0.103	Lower limit	Upper limit					
feronesi, 2012 ernandez-Alvarez, 2014a ernandez-Alvarez, 2014b hao, 2015a hao, 2015b	0.298			p-Value				
ernandez-Alvarez, 2014a ernandez-Alvarez, 2014b hao, 2015a hao, 2015b		0.177	0.369	0.000	- 1	1.4	-	
ernandez-Alvarez, 2014b hao, 2015a hao, 2015b	0.102	0.218	0.393	0.000		_ ·	-	
hao, 2015a hao, 2015b	0.105	0.059	0.173	0.000				
hao, 2015b	0.018	0.006	0.055	0.000				
	0.061	0.015	0.213	0.000		—		
	0.066	0.037	0.115	0.000				
hao, 2015c	0.032	0.004	0.196	0.001				
Sherman, 2018	0.557	0.504	0.609	0.036				
eng, 2018	0.086	0.058	0.125	0.000				
lelmy, 2018a	0.028	0.004	0.177	0.001		—		
lelmy, 2018b	0.001	0.000	0.959	0.178		<u> </u>	_	
lelmy, 2018c	0.001	0.000	1.000	0.513		<u> </u>		
lelmy, 2018d	0.001	0.000	0.750	0.091		6-	_	-
lelmy, 2018e	0.001	0.000	0.287	0.024		6 —	-	
lelmy, 2018f	0.013	0.005	0.034	0.000		6		
Ла, 2018	0.108	0.083	0.139	0.000				
an, 2019	0.030	0.011	0.077	0.000				
i, 2020a	0.096	0.052	0.169	0.000				
i, 2020b	0.152	0.103	0.218	0.000				
i, 2020c	0.001	0.000	0.331	0.029			-	
Coppola, 2020	0.231	0.136	0.364	0.000		_ I -∎	-	
ehlberg, 2021a	0.012	0.002	0.082	0.000				
ehlberg, 2021b	0.077	0.011	0.391	0.017		le-		
ehlberg, 2021c	0.001	0.000	1.000	0.469				
ehlberg, 2021d	0.001	0.000	1.000	0.513		<u> </u>		
ehlberg, 2021e	0.200	0.027	0.691	0.215		_ Ĭ ⊸ ∎		
ehlberg, 2021f	0.001	0.000	1.000	0.758				
ehlberg, 2021g	0.001	0.000	1.000	0.662		<u> </u>	_	
ehlberg, 2021h	0.142	0.019	0.580	0.097		I-0-	_	
ehlberg, 2021i	0.001	0.000	1.000	0.662				
Cervero-Arago, 2021	0.340	0.223	0.480	0.026		T.	-	
Galan-Puchades, 2021	0.350	0.263	0.448	0.003			ě l	
cui, 2021	0.123	0.091	0.165	0.000			~	
sghari, 2022a	0.025	0.004	0.157	0.000		<u></u>		
sghari, 2022b	0.025	0.004	0.157	0.000		5-		
sghari, 2022c	0.050	0.013	0.179	0.000		6 -		
u, 2022a	0.015	0.007	0.033	0.000		5		
u, 2022b	0.020	0.005	0.077	0.000		5		
Vu, 2022	0.047	0.025	0.088	0.000		6		
Vang, 2022a	0.001	0.000	0.232	0.018				
Vang, 2022b	0.001	0.000	0.007	0.000				
Vang, 2022c	0.001	0.000	0.391	0.036		<u> </u>	— I	
ou, 2022	0.400	0.192	0.652	0.442		T -	_ 	
eng, 2024a	0.055	0.018	0.156	0.000		b -	<u> </u>	
eng, 2024b	0.001	0.000	1.000	0.662				
eng, 2024c	0.001	0.000	1.000	0.758		<u> </u>		
eng, 2024f	0.001	0.000	0.941	0.162		<u> </u>		
eng, 2024h eng, 2024h	0.001	0.000	0.674	0.102		<u> </u>		
eng, 2024п Ла, 2024	0.001	0.002	0.032	0.000				
Salan-Puchades, 2024a	0.700	0.376	0.900	0.220		T		
Galan-Puchades, 2024b	0.700	0.376	0.877	1.000		<u> </u>		
aiaii-r uciiaucs, 20240	0.500	0.123	0.877	0.000			I	

FIGURE 2 | Pooled molecular prevalence of *G. duodenalis* in rodents, with 95% confidence intervals, estimated using a random-effects model based on included molecular studies.

thrive in both urban and agricultural settings. Rodent species such as *Rattus* spp., *Mus musculus*, porcupines, squirrels, voles, and chinchillas have been repeatedly linked to environmental contamination and the zoonotic spread of various pathogens, including *G. duodenalis*. These animals can serve either as

silent reservoirs or mechanical carriers, excreting cysts into the environment and promoting transmission via direct interaction or through the contamination of water supplies (Gherman et al. 2018; Helmy et al. 2018; Coppola et al. 2020; Asghari et al. 2022; Rezaie et al. 2025).

Lower Upper limit limit p-Value	moved
Veronesi, 2012	
Fernandez-Alvarez, 2014a 0.073 0.046 0.114 0.000 Fernandez-Alvarez, 2014b 0.078 0.050 0.119 0.000 Zhao, 2015b 0.075 0.047 0.115 0.000 Zhao, 2015c 0.076 0.048 0.115 0.000 Zhao, 2015c 0.076 0.048 0.115 0.000 Zhao, 2015c 0.076 0.048 0.115 0.000 Deng, 2018 0.074 0.051 0.106 0.000 Deng, 2018 0.074 0.051 0.106 0.000 Deng, 2018 0.076 0.049 0.117 0.000 Hellmy, 2018b 0.075 0.048 0.115 0.000 Hellmy, 2018b 0.075 0.048 0.115 0.000 Hellmy, 2018c 0.075 0.048 0.114 0.000 Hellmy, 2018d 0.075 0.048 0.114 0.000 Hellmy, 2018d 0.075 0.048 0.114 0.000 Hellmy, 2018d 0.075 0.048 0.116 0.000 Hellmy, 2018d 0.075 0.049 0.117 0.000 Hellmy, 2018d 0.076 0.049 0.117 0.000 Hellmy, 2018d 0.076 0.049 0.117 0.000 Hellmy, 2018d 0.076 0.049 0.114 0.000 Tan, 2019 0.077 0.045 0.114 0.000 Tan, 2019 0.077 0.049 0.118 0.000 Li, 2020a 0.073 0.047 0.114 0.000 Li, 2020b 0.072 0.045 0.112 0.000 Li, 2020b 0.072 0.045 0.112 0.000 Li, 2020c 0.076 0.049 0.111 0.000 Fehlberg, 2021a 0.077 0.050 0.119 0.000 Fehlberg, 2021b 0.074 0.074 0.114 0.000 Fehlberg, 2021c 0.075 0.048 0.114 0.000 Fehlberg, 2021c 0.075 0.048 0.114 0.000 Fehlberg, 2021c 0.075 0.048 0.114 0.000 Fehlberg, 2021c 0.073 0.046 0.112 0.000 Fehlberg, 2021c 0.073 0.046 0.112 0.000 Fehlberg, 2021c 0.075 0.048 0.114 0.000 Fehlberg, 2021c 0.073 0.046 0.112 0.000 Fehlberg, 2021c 0.074 0.048 0.114 0.000 Fehlberg, 2021c 0.075 0.048 0.114 0.000 Fehlberg, 2021c 0.075 0.048 0.114 0.000 Fehlberg, 2021c 0.075 0.048 0.114 0.000 Fehlberg, 2021c 0.076 0.049 0.117 0.000 Asghari, 2022c 0.076 0.049 0.116 0.000 Wung, 2022c 0.076 0.049 0.116 0.000 Wang, 2022c 0.076 0.049 0.116 0.000 Wang, 2022c 0.076 0.049 0.116 0.000 Feng, 2024b 0.075 0.048 0.116 0.000	
Fernandez-Alvarez, 2014b	
Chao, 2015a	
Prince 2015 b	
Chao, 2015c Chao, 2015c Cherman, 2018 Chao, 2015c Cherman, 2018 Cherman, 2018 Chao, 2018 Cherman, 20	
Sherman, 2018	
Deng, 2018	
Relmy, 2018a	
Relmy, 2018b	
Helmy, 2018c	
Helmy, 2018d	
Relmy, 2018e	
Helmy, 2018e 0.076 0.049 0.117 0.000 Helmy, 2018f 0.079 0.051 0.120 0.000 day, 2018f 0.072 0.045 0.114 0.000 day, 2018f 0.072 0.045 0.114 0.000 day, 2018 0.072 0.045 0.114 0.000 day, 2019 0.073 0.047 0.114 0.000 day, 2020b 0.072 0.045 0.112 0.000 day, 2020b 0.076 0.049 0.116 0.000 day, 2020 0.071 0.045 0.111 0.000 day, 2021a 0.077 0.050 0.119 0.000 day, 2021b 0.074 0.047 0.114 0.000 day, 2021b 0.075 0.048 0.114 0.000 day, 2021d 0.074 0.048 0.114 0.000 day, 2021d 0.075 0.048 0.114 0.000 day, 2021d 0.076 0.049 0.117 0.000 day, 2021d 0.076 0.049 0.117 0.000 day, 2022d 0.076 0.049 0.116 0.000 day, 2022d 0.07	
Relmy, 2018f Ada, 2018 Ada, 2018 Ada, 2018 Ada, 2018 Ada, 2019 Ada, 2018 Ada, 2019 Ada, 2029 Ada, 2020 Ada, 2020 Ada, 2020 Ada, 2020 Ada, 2020 Ada, 2022 Ada, 2076 Ada, 2019 Ada, 2022 Ada, 2024 Ada	
Ana, 2018 Ana, 2019 Ana, 2010 Ana, 2010 Ana, 2010 Ana, 2020	
ai, 2020a 0.073 0.047 0.114 0.000 ii, 2020b 0.072 0.045 0.112 0.000 ii, 2020c 0.076 0.049 0.116 0.000 coppola, 2020 0.071 0.045 0.111 0.000 ehlberg, 2021a 0.077 0.050 0.119 0.000 ehlberg, 2021b 0.074 0.047 0.114 0.000 ehlberg, 2021c 0.075 0.048 0.114 0.000 ehlberg, 2021d 0.075 0.048 0.114 0.000 ehlberg, 2021d 0.075 0.048 0.114 0.000 ehlberg, 2021e 0.073 0.046 0.112 0.000 ehlberg, 2021e 0.073 0.046 0.112 0.000 ehlberg, 2021e 0.074 0.048 0.114 0.000 ehlberg, 2021f 0.074 0.048 0.114 0.000 ehlberg, 2021g 0.074 0.048 0.114 0.000 ehlberg, 2021l 0.070 0.047 0.113 0.000 ehlberg, 2021i 0.070 0.047 0.113 0.000 ehlberg, 2021i 0.070 0.044 0.109 0.000 ehlberg, 2021i 0.070 0.044 0.109 0.000 espellar, 2021 0.070 0.044 0.108 0.000 extra 2021 0.070 0.044 0.108 0.000 extra 2021 0.076 0.049 0.117 0.000 extra 2022 0.075 0.048 0.116 0.000 extra 2022 0.076 0.049 0.117 0.000 extra 2022 0.076 0.049 0.116 0.000 extra 2022 0.076 0.049 0.116 0.000 extra 2022 0.076 0.048 0.116 0.000 extra 2022 0.076 0.048 0.116 0.000 extra 2022 0.076 0.048 0.116 0.000 extra 2024b 0.075 0.048 0.116 0.000	
i, 2020b	
i, 2020b	
Coppola, 2020 0.071 0.045 0.111 0.000 chiblerg, 2021a 0.077 0.050 0.119 0.000 chiblerg, 2021b 0.074 0.047 0.114 0.000 chiblerg, 2021c 0.075 0.048 0.114 0.000 chiblerg, 2021d 0.075 0.048 0.114 0.000 chiblerg, 2021d 0.075 0.048 0.114 0.000 chiblerg, 2021d 0.073 0.046 0.112 0.000 chiblerg, 2021f 0.074 0.048 0.114 0.000 chiblerg, 2021g 0.074 0.048 0.114 0.000 chiblerg, 2021g 0.074 0.048 0.114 0.000 chiblerg, 2021h 0.073 0.047 0.113 0.000 chiblerg, 2021i 0.074 0.048 0.114 0.000 chiblerg, 2021i 0.074 0.048 0.114 0.000 chiblerg, 2021i 0.074 0.048 0.114 0.000 chiblerg, 2021i 0.070 0.044 0.109 0.000 chiblerg, 2021i 0.070 0.044 0.109 0.000 chiblerg, 2021i 0.070 0.044 0.108 0.000 chiblerg, 2021i 0.070 0.045 0.113 0.000 chiblerg, 2022a 0.076 0.049 0.117 0.000 chiblerg, 2022b 0.076 0.049 0.117 0.000 chiblerg, 2022b 0.076 0.048 0.116 0.000 chiblerg, 2022b 0.077 0.049 0.118 0.000 chiblerg, 2022b 0.077 0.049 0.118 0.000 chiblerg, 2022b 0.077 0.049 0.118 0.000 chiblerg, 2022b 0.076 0.048 0.116 0.000 chiblerg, 2022b 0.076 0.048 0.116 0.000 chiblerg, 2022b 0.076 0.049 0.117 0.000 chiblerg, 2022b 0.076 0.049 0.116 0.000 chiblerg, 2022b 0.076 0.048 0.116 0.000 chiblerg, 2022b 0.076 0.048 0.116 0.000 chiblerg, 2022b 0.076 0.049 0.116 0.000 chiblerg, 2022b 0.076 0.049 0.116 0.000 chiblerg, 2022b 0.076 0.049 0.116 0.000 chiblerg, 2022b 0.076 0.048 0.116 0.000 chiblerg, 2022b 0.076 0.049 0.116 0.000 chiblerg, 2022b 0.076 0.049 0.116 0.000 chiblerg, 2022b 0.076 0.048 0.116 0.000 chiblerg, 2022b 0.076 0.048 0.116 0.000 chiblerg, 2022b 0.076 0.048 0.116 0.000 chiblerg	
tehlberg, 2021a 0.077 0.050 0.119 0.000 tehlberg, 2021b 0.074 0.047 0.114 0.000 tehlberg, 2021c 0.075 0.048 0.114 0.000 tehlberg, 2021d 0.075 0.048 0.114 0.000 tehlberg, 2021e 0.073 0.046 0.112 0.000 tehlberg, 2021f 0.074 0.048 0.114 0.000 tehlberg, 2021f 0.074 0.048 0.114 0.000 tehlberg, 2021g 0.074 0.048 0.114 0.000 tehlberg, 2021h 0.073 0.047 0.113 0.000 tehlberg, 2021i 0.074 0.048 0.114 0.000 tehlberg, 2021i 0.074 0.048 0.114 0.000 tehlberg, 2021i 0.070 0.044 0.109 0.000 tehlberg, 2021i 0.070 0.044 0.109 0.000 tehlberg, 2021i 0.070 0.044 0.109 0.000 tehlberg, 2021i 0.070 0.044 0.113 0.000 tehlberg, 2021i 0.070 0.044 0.109 0.000 tehlberg, 2021i 0.070 0.044 0.113 0.000 tehlberg, 2021i 0.072 0.045 0.113 0.000 tehlberg, 2021a 0.076 0.049 0.117 0.000 tehlberg, 2021a 0.076 0.048 0.116 0.000 tu, 2022a 0.076 0.048 0.116 0.000 two and the tehlberg, 2021a 0.076 0.049 0.117 0.000 two and the tehlberg, 2021a 0.076 0.048 0.116 0.000 two and the tehlberg, 2021a 0.076 0.049 0.117 0.000 two and the tehlberg, 2021a 0.076 0.048 0.116 0.000 two and the tehlberg, 2021a 0.076 0.049 0.116 0.000 two and the tehlberg, 2021a 0.076 0.049 0.116 0.000 two and the tehlberg, 2021a 0.076 0.049 0.116 0.000 two and the tehlberg, 2021a 0.076 0.049 0.116 0.000 two and the tehlberg, 2021a 0.076 0.049 0.116 0.000 two and the tehlberg, 2021a 0.076 0.049 0.116 0.000 two and the tehlberg, 2021a 0.076 0.049 0.116 0.000 two and the tehlberg, 2021a 0.076 0.048 0.016 0.000 two and the tehlberg, 2021a 0.076 0.049 0.016 0.000 two and the tehlberg, 2021a 0.076 0.049 0.016 0.000 two and the tehlberg, 2021a 0.076 0.049 0.016 0.000 two and the tehlberg, 2021a 0.000	
tehlberg, 2021a 0.077 0.050 0.119 0.000 tehlberg, 2021b 0.074 0.047 0.114 0.000 tehlberg, 2021c 0.075 0.048 0.114 0.000 tehlberg, 2021d 0.075 0.048 0.114 0.000 tehlberg, 2021e 0.073 0.046 0.112 0.000 tehlberg, 2021f 0.074 0.048 0.114 0.000 tehlberg, 2021f 0.074 0.048 0.114 0.000 tehlberg, 2021g 0.074 0.048 0.114 0.000 tehlberg, 2021h 0.073 0.047 0.113 0.000 tehlberg, 2021i 0.074 0.048 0.114 0.000 tehlberg, 2021i 0.074 0.048 0.114 0.000 tehlberg, 2021i 0.070 0.044 0.109 0.000 tehlberg, 2021i 0.070 0.044 0.109 0.000 tehlberg, 2021i 0.070 0.044 0.109 0.000 tehlberg, 2021i 0.070 0.044 0.113 0.000 tehlberg, 2021i 0.070 0.044 0.109 0.000 tehlberg, 2021i 0.070 0.044 0.113 0.000 tehlberg, 2021i 0.072 0.045 0.113 0.000 tehlberg, 2021a 0.076 0.049 0.117 0.000 tehlberg, 2021a 0.076 0.048 0.116 0.000 tu, 2022a 0.076 0.048 0.116 0.000 two and the tehlberg, 2021a 0.076 0.049 0.117 0.000 two and the tehlberg, 2021a 0.076 0.048 0.116 0.000 two and the tehlberg, 2021a 0.076 0.049 0.117 0.000 two and the tehlberg, 2021a 0.076 0.048 0.116 0.000 two and the tehlberg, 2021a 0.076 0.049 0.116 0.000 two and the tehlberg, 2021a 0.076 0.049 0.116 0.000 two and the tehlberg, 2021a 0.076 0.049 0.116 0.000 two and the tehlberg, 2021a 0.076 0.049 0.116 0.000 two and the tehlberg, 2021a 0.076 0.049 0.116 0.000 two and the tehlberg, 2021a 0.076 0.049 0.116 0.000 two and the tehlberg, 2021a 0.076 0.049 0.116 0.000 two and the tehlberg, 2021a 0.076 0.048 0.016 0.000 two and the tehlberg, 2021a 0.076 0.049 0.016 0.000 two and the tehlberg, 2021a 0.076 0.049 0.016 0.000 two and the tehlberg, 2021a 0.076 0.049 0.016 0.000 two and the tehlberg, 2021a 0.000	
Rehlberg, 2021b Rehlberg, 2021c Rehlberg, 2021c Rehlberg, 2021c Rehlberg, 2021d Rehlberg, 2021d Rehlberg, 2021e Rehlberg, 2021e Rehlberg, 2021e Rehlberg, 2021f Rehlberg, 2021f Rehlberg, 2021g Rehlbe	
Rehlberg, 2021c 0.075 0.048 0.114 0.000 Rehlberg, 2021d 0.075 0.048 0.114 0.000 Rehlberg, 2021e 0.073 0.046 0.112 0.000 Rehlberg, 2021f 0.074 0.048 0.114 0.000 Rehlberg, 2021g 0.074 0.048 0.114 0.000 Rehlberg, 2021g 0.074 0.048 0.114 0.000 Rehlberg, 2021i 0.070 0.044 0.109 0.000 Rehlberg, 2021i 0.070 0.045 0.113 0.000 Rehlberg, 2021i 0.070 0.045 0.113 0.000 Rehlberg, 2022a 0.076 0.049 0.117 0.000 Rehlberg, 2022b 0.075 0.048 0.116 0.000 Rehlberg, 2022b 0.076 0.049 0.117 0.000 Rehlberg, 2022b 0.076 0.049 0.116 0.000 Rehlberg, 2021b 0.000 Rehlberg, 2021b 0.000 Rehlberg, 2021b 0.0000 Rehlberg, 2021b 0.0	
Rehlberg, 2021d	
ehlberg, 2021e 0.073 0.046 0.112 0.000 ehlberg, 2021f 0.074 0.048 0.114 0.000 ehlberg, 2021g 0.074 0.048 0.114 0.000 ehlberg, 2021h 0.073 0.047 0.113 0.000 ehlberg, 2021i 0.074 0.048 0.114 0.000 ehlberg, 2021i 0.074 0.048 0.114 0.000 ehlberg, 2021i 0.070 0.044 0.109 0.000 elervero-Arago, 2021 0.070 0.044 0.108 0.000 elui, 2021 0.072 0.045 0.113 0.000 essphari, 2022a 0.076 0.049 0.117 0.000 essphari, 2022b 0.076 0.049 0.117 0.000 essphari, 2022c 0.075 0.048 0.116 0.000 elui, 2022 0.076 0.049 0.118 0.000 elui, 2022 0.076 0.049 0.117 0.000 elui, 2022 0.076 0.049 0.117 0.000 elui, 2022 0.076 0.049 0.116 0.000 elui, 2022 0.076 0.049 0.117 0.000 elui, 2022 0.076 0.049 0.116 0.000 elui, 2022 0.070 0.045 0.108 0.000 elui, 2022 0.070 0.045 0.108 0.000 elui, 2022 0.070 0.045 0.108 0.000 elui, 2024 0.075 0.048 0.116 0.000	
Rehlberg, 2021f 0.074 0.048 0.114 0.000 elehlberg, 2021g 0.074 0.048 0.114 0.000 elehlberg, 2021g 0.074 0.048 0.114 0.000 elehlberg, 2021h 0.073 0.047 0.113 0.000 elehlberg, 2021i 0.074 0.048 0.114 0.000 elehlberg, 2021i 0.070 0.044 0.109 0.000 elehlberg, 2021 0.070 0.044 0.109 0.000 elehlberg, 2021 0.069 0.044 0.108 0.000 elehlberg, 2021 0.072 0.045 0.113 0.000 elehlberg, 2021 0.072 0.045 0.113 0.000 elehlberg, 2022a 0.076 0.049 0.117 0.000 eleghlar, 2022b 0.076 0.049 0.117 0.000 elehlberg, 2022c 0.075 0.048 0.116 0.000 elehlberg, 2022b 0.077 0.049 0.118 0.000 elehlberg, 2022b 0.076 0.049 0.117 0.000 elehlberg, 2022b 0.082 0.053 0.125 0.000 elehlberg, 2024b 0.075 0.048 0.116 0.000 el	
gehlberg, 2021g 0.074 0.048 0.114 0.000 gehlberg, 2021h 0.073 0.047 0.113 0.000 gehlberg, 2021i 0.074 0.048 0.114 0.000 gervero-Arago, 2021 0.070 0.044 0.109 0.000 gellan-Puchades, 2021 0.069 0.044 0.108 0.000 gell, 2021 0.072 0.045 0.113 0.000 gell, 2022a 0.076 0.049 0.117 0.000 gell, 2022b 0.076 0.049 0.117 0.000 gell, 2022c 0.075 0.048 0.116 0.000 gell, 2022a 0.077 0.049 0.118 0.000 gell, 2022b 0.076 0.048 0.116 0.000 gell, 2022b 0.076 0.048 0.116 0.000 gell, 2022b 0.076 0.048 0.116 0.000 gell, 2022b 0.076 0.049 0.117 0.000 gell, 2022c 0.076 0.049 0.117 0.000 gell, 2022e 0.076 <td></td>	
Rehlberg, 2021h 0.073 0.047 0.113 0.000 Rehlberg, 2021i 0.074 0.048 0.114 0.000 Rehlberg, 2021i 0.070 0.044 0.109 0.000 Rehlberg, 2021 0.070 0.044 0.109 0.000 Rehlberg, 2021 0.069 0.044 0.108 0.000 Rehlberg, 2021 0.069 0.044 0.108 0.000 Rehlberg, 2021 0.072 0.045 0.113 0.000 Rehlberg, 2021 0.076 0.049 0.117 0.000 Resphari, 2022a 0.076 0.049 0.117 0.000 Resphari, 2022c 0.075 0.048 0.116 0.000 Rehlberg, 2021a 0.077 0.049 0.118 0.000 Rehlberg, 2021a 0.076 0.049 0.117 0.000 Rehlberg, 2021a 0.076 0.049 0.116 0.000 Rehlberg, 2021a 0.076 0.048 0.116 0.000 Rehlberg, 2	
gehlberg, 2021i 0.074 0.048 0.114 0.000 Gervero-Arago, 2021 0.070 0.044 0.109 0.000 Galan-Puchades, 2021 0.069 0.044 0.108 0.000 Gui, 2021 0.072 0.045 0.113 0.000 Sasphari, 2022a 0.076 0.049 0.117 0.000 Sasphari, 2022b 0.075 0.048 0.116 0.000 Sasphari, 2022c 0.075 0.048 0.116 0.000 Su, 2022a 0.079 0.051 0.120 0.000 Su, 2022b 0.077 0.049 0.118 0.000 Wu, 2022 0.076 0.048 0.116 0.000 Wang, 2022a 0.076 0.049 0.117 0.000 Wang, 2022b 0.082 0.053 0.125 0.000 Wang, 2022c 0.076 0.049 0.116 0.000 Wang, 2022c 0.076 0.049 0.116 0.000 Wang, 2022c 0.076 0.045 0.108 0.000 Yeng, 2024a 0.075	
Cervero-Arago, 2021 0.070 0.044 0.109 0.000 Galan-Puchades, 2021 0.069 0.044 0.108 0.000 Cui, 2021 0.072 0.045 0.113 0.000 Asghari, 2022a 0.076 0.049 0.117 0.000 Asghari, 2022b 0.076 0.049 0.116 0.000 Asghari, 2022c 0.075 0.048 0.116 0.000 Asghari, 2022a 0.079 0.051 0.120 0.000 Asghari, 2022a 0.077 0.049 0.118 0.000 Avag, 2022a 0.076 0.048 0.116 0.000 Avag, 2022a 0.076 0.049 0.117 0.000 Avag, 2022b 0.082 0.053 0.125 0.000 Avag, 2022b 0.076 0.049 0.116 0.000 Avag, 2022c 0.076 0.049 0.116 0.000 Avag, 2022c 0.076 0.049 0.116 0.000 Avag, 2022c 0.070 0.045 0.108 0.000 Avag, 2022a 0.070 <td></td>	
Salan-Puchades, 2021 0.069 0.044 0.108 0.000 Cui, 2021 0.072 0.045 0.113 0.000 Asghari, 2022a 0.076 0.049 0.117 0.000 Asghari, 2022b 0.075 0.048 0.116 0.000 Cui, 2022a 0.079 0.051 0.120 0.000 Cui, 2022b 0.077 0.049 0.118 0.000 Cui, 2022b 0.076 0.048 0.116 0.000 Cui, 2022 0.076 0.048 0.116 0.000 Cui, 2022 0.076 0.048 0.116 0.000 Cui, 2022 0.076 0.049 0.117 0.000 Cui, 2022b 0.076 0.049 0.117 0.000 Cui, 2022b 0.076 0.049 0.116 0.000 Cui, 2022b 0.076 0.049 0.116 0.000 Cui, 2022b 0.076 0.049 0.116 0.000 Cui, 2022 0.076 0.049 0.116 0.000 Cui, 2022 0.070 0.045 0.108 0.000 Cui, 2022 0.070 0.048 0.116 0.000 Cui, 2024 0.075 0.048 0.116 0.000 Cui, 2024b 0.074 0.048 0.116 0.000	
Qui, 2021 0.072 0.045 0.113 0.000 Assphari, 2022a 0.076 0.049 0.117 0.000 Assphari, 2022b 0.076 0.049 0.117 0.000 Assphari, 2022c 0.075 0.048 0.116 0.000 Assphari, 2022a 0.079 0.051 0.120 0.000 Assphari, 2022b 0.077 0.049 0.118 0.000 Avang, 2022a 0.076 0.048 0.116 0.000 Avang, 2022a 0.076 0.049 0.117 0.000 Avang, 2022b 0.082 0.053 0.125 0.000 Avang, 2022c 0.076 0.049 0.116 0.000 Avang, 2022c 0.070 0.045 0.108 0.000 Avang, 2022a 0.075 0.048 0.116 0.000 Avang, 2022c 0.076 0.049 0.116 0.000 Avang, 2022a 0.075 0.048 0.116 0.000 Avang, 2022a 0.075 0.048 0.116 0.000 Avang, 2022a 0.075	
Asghari, 2022a 0.076 0.049 0.117 0.000 Asghari, 2022b 0.076 0.049 0.117 0.000 Asghari, 2022c 0.075 0.048 0.116 0.000 Au, 2022a 0.079 0.051 0.120 0.000 Au, 2022b 0.077 0.049 0.118 0.000 Au, 2022b 0.076 0.048 0.116 0.000 Auang, 2022a 0.076 0.049 0.117 0.000 Auang, 2022b 0.082 0.053 0.125 0.000 Auang, 2022c 0.076 0.049 0.116 0.000 Auang, 2022c 0.076 0.049 0.116 0.000 Auang, 2022c 0.070 0.045 0.108 0.000 Auang, 2024a 0.075 0.048 0.116 0.000 Auang, 2024a 0.075 0.048 0.116 0.000 Auang, 2024a 0.075 0.048 0.116 0.000 Auang, 2024a 0.074 0.048 0.114 0.000	
Aughari, 2022b 0.076 0.049 0.117 0.000 Aughari, 2022c 0.075 0.048 0.116 0.000 Aughari, 2022a 0.079 0.051 0.120 0.000 Aughari, 2022b 0.076 0.049 0.118 0.000 Avang, 2022a 0.076 0.049 0.117 0.000 Avang, 2022b 0.082 0.053 0.125 0.000 Avang, 2022c 0.076 0.049 0.116 0.000 Avang, 2022c 0.070 0.045 0.108 0.000 Avang, 2024a 0.075 0.048 0.116 0.000 Avang, 2024b 0.074 0.048 0.114 0.000	
Asghari, 2022c 0.075 0.048 0.116 0.000 (Au, 2022a 0.079 0.051 0.120 0.000 (Au, 2022b 0.077 0.049 0.118 0.000 (Au, 2022 0.076 0.048 0.116 0.000 (Auang, 2022a 0.076 0.049 0.117 0.000 (Auang, 2022b 0.082 0.053 0.125 0.000 (Auang, 2022c 0.076 0.049 0.116 0.000 (Auang, 2022c 0.076 0.049 0.116 0.000 (Auang, 2022c 0.070 0.045 0.108 0.000 (Auang, 2024a 0.075 0.048 0.116 0.000 (Auang, 2024a 0.074 0.048 0.114 0.000	
Xu, 2022a 0.079 0.051 0.120 0.000 Xu, 2022b 0.077 0.049 0.118 0.000 Nu, 2022 0.076 0.048 0.116 0.000 Nang, 2022a 0.076 0.049 0.117 0.000 Nang, 2022b 0.082 0.053 0.125 0.000 Nang, 2022c 0.076 0.049 0.116 0.000 You, 2022 0.070 0.045 0.108 0.000 Yeng, 2024a 0.075 0.048 0.116 0.000 Yeng, 2024b 0.074 0.048 0.114 0.000	
Xu, 2022b 0.077 0.049 0.118 0.000 Wu, 2022 0.076 0.048 0.116 0.000 Wang, 2022a 0.076 0.049 0.117 0.000 Wang, 2022b 0.082 0.053 0.125 0.000 Wang, 2022c 0.076 0.049 0.116 0.000 dou, 2022 0.070 0.045 0.108 0.000 deng, 2024a 0.075 0.048 0.116 0.000 deng, 2024b 0.074 0.048 0.114 0.000	
Vu, 2022 0.076 0.048 0.116 0.000 Vang, 2022a 0.076 0.049 0.117 0.000 Vang, 2022b 0.082 0.053 0.125 0.000 Vang, 2022c 0.076 0.049 0.116 0.000 Jou, 2022 0.070 0.045 0.108 0.000 Jeng, 2024a 0.075 0.048 0.116 0.000 Jeng, 2024b 0.074 0.048 0.114 0.000	
Vang, 2022a 0.076 0.049 0.117 0.000 Vang, 2022b 0.082 0.053 0.125 0.000 Vang, 2022c 0.076 0.049 0.116 0.000 ou, 2022 0.070 0.045 0.108 0.000 eng, 2024a 0.075 0.048 0.116 0.000 eng, 2024b 0.074 0.048 0.114 0.000	
Wang, 2022b 0.082 0.053 0.125 0.000 Wang, 2022c 0.076 0.049 0.116 0.000 dou, 2022 0.070 0.045 0.108 0.000 deng, 2024a 0.075 0.048 0.116 0.000 deng, 2024b 0.074 0.048 0.114 0.000	
Wang, 2022c 0.076 0.049 0.116 0.000 cou, 2022 0.070 0.045 0.108 0.000 eng, 2024a 0.075 0.048 0.116 0.000 eng, 2024b 0.074 0.048 0.114 0.000	
ou, 2022 0.070 0.045 0.108 0.000 eng, 2024a 0.075 0.048 0.116 0.000 eng, 2024b 0.074 0.048 0.114 0.000	
eng, 2024a 0.075 0.048 0.116 0.000 eng, 2024b 0.074 0.048 0.114 0.000	
eng, 2024b 0.074 0.048 0.114 0.000	
eng, 2024c 0.074 0.048 0.114 0.000	
eng, 2024f 0.075 0.048 0.115 0.000	
eng, 2024h 0.075 0.048 0.116 0.000	
Aa, 2024 0.079 0.051 0.121 0.000	
Galan-Puchades, 2024a 0.068 0.044 0.106 0.000	
Galan-Puchades, 2024b 0.071 0.045 0.109 0.000	
0.071 0.045 0.105 0.000 0.071 0.045 0.105 0.000	
-1.00 -0.50 0.00 0.50	0 1

 $\textbf{FIGURE 3} \quad | \quad \text{Sensitivity analysis of } \textit{G. duodenalis} \text{ molecular prevalence in rodents}.$

Managing diseases transmitted by rodents remains a significant challenge, largely due to their rapid reproduction, behavioural adaptability, and the difficulty of accessing many of their habitats, especially in peri-urban slums, agricultural settings, and areas where human environments intersect with natural ecosystems (Parsons et al. 2020; Dalecky et al. 2024; Shehata et al. 2025).

Therefore, understanding the diversity of *G. duodenalis* genotypes in rodents is critical for evaluating their role in zoonotic transmission and informing effective public health interventions. Hence, the primary objective of this study was to systematically review and quantitatively synthesise the global prevalence and genotypic distribution of *G. duodenalis* in rodent populations

using molecular diagnostic methods. By focusing exclusively on molecular studies that specifically identified *G. duodenalis*, this study aimed to provide a comprehensive understanding of the host-parasite relationship, zoonotic potential, and geographical patterns of assemblages/sub-assemblages in rodents.

2 | Methods

2.1 | Ethics Approval

This study was approved by the Ethics Committee of Qazvin University of Medical Sciences, Qazvin, Iran (Approval No. IR.QUMS.REC.1403.329).

2.2 | Study Design

A global systematic review and meta-analysis were conducted to determine the molecular prevalence and distribution of *G. duodenalis* assemblages and sub-assemblages in rodent populations. The study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Moher et al. 2015).

2.3 | Search Procedure

An extensive literature search was performed in four international databases: Medline/PubMed, ProQuest, Scopus, and Web of Science, up to 15 October 2024. Google Scholar was utilised to identify relevant grey literature. The search strategy employed the following keywords: (§Intestinal ParasitesH OR \$Parasitic InfectionsH OR \$G. duodenalisH OR \$G. lambliaH OR \$G. intestinalisH OR \$GiardiasisH) AND (\$PrevalenceH OR \$EpidemiologyH OR \$FrequencyH OR \$OccurrenceH) AND (\$GenotypeH OR \$GenotypingH OR \$AssemblageH OR \$SubassemblageH) AND (\$AnimalsH OR \$Small MammalsH OR \$RodentsH). Additional keywords were applied where necessary, and reference lists of relevant studies were manually screened for further eligible articles. Duplicate records were automatically removed using EndNote X7 software. Two independent reviewers assessed each article for eligibility.

2.4 | Inclusion/Exclusion Criteria

Only original research articles that used molecular methods (such as PCR-based techniques) for the detection and genotyping of *G. duodenalis* in rodents were included in this study. To be eligible, studies had to report the prevalence and/or genotypic characterisation (assemblages/sub-assemblages) of *G. duodenalis* and provide sufficient data for inclusion in the meta-analysis. Studies based solely on microscopic, immunological, or serological techniques without molecular confirmation were excluded. Additionally, studies that focused on *Giardia* species other than *G. duodenalis* were excluded, even if they used molecular techniques. In molecular studies/datasets involving multiple *Giardia* species, only data related specifically to *G. duodenalis* were considered. Studies that examined non-rodent hosts or presented data on mixed host species without separate

analysis for rodents were also excluded. Review articles, case reports, conference abstracts, and articles lacking sufficient data for molecular prevalence estimation were not included in this study.

2.5 | Quality Assessment and Data Extraction

The quality of the included studies was evaluated using the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for prevalence studies (Munn et al. 2014). Articles with scores of 4–6 and \geq 7 were categorised as medium- and high-quality studies, respectively. Key information was extracted independently by two researchers and cross-validated by other team members. Extracted data included the first author's surname, rodent species, assemblage/sub-assemblage types, quality assessment scores, year of publication, continent, country, World Health Organization (WHO) region, total sample size, and the number of positive samples.

2.6 | Meta-Analysis

Statistical analyses were conducted using Comprehensive Meta-Analysis (CMA) software, version 3. A random-effects model was applied to calculate the pooled molecular prevalence and corresponding 95% confidence intervals (CIs) for *G. duodenalis* in rodents. Subgroup analyses were performed based on sample size, continent, country, WHO region, and rodent species. Forest plots were used to present the pooled molecular prevalence along with 95% CIs. Heterogeneity across studies was quantified using the I² statistic, with values interpreted as low (< 25%), moderate (25–50%), or high (> 50%) heterogeneity. Sensitivity analyses were carried out to assess the robustness of the findings by sequentially excluding individual studies. The genetic diversity of *G. duodenalis* and the distribution of its assemblages and sub-assemblages were reported descriptively.

3 | Results

3.1 | Included Articles

Expert researchers conducted a thorough search across four international databases, yielding 8967 initial records. After removing duplicates and reviewing the 5128 remaining papers, 31 articles were selected. A more detailed and meticulous review resulted in the exclusion of eight additional studies, leaving 23 relevant papers (54 datasets) that met the inclusion criteria for this study (Levecke et al. 2011; Veronesi et al. 2012; Fernandez-Alvarez et al. 2014; Zhao et al. 2015; Gherman et al. 2018; Helmy et al. 2018; Ma et al. 2018; Ma et al. 2024; Deng et al. 2018; Tan et al. 2019; Li et al. 2020; Coppola et al. 2020; Cervero-Aragó et al. 2021; Cui et al. 2021; Fehlberg et al. 2021; Galán-Puchades et al. 2021; Galán-Puchades et al. 2023; Asghari et al. 2022; Wang et al. 2022; Wu et al. 2022; Xu et al. 2022; Zou et al. 2022; Feng et al. 2024) (Figure 1). Studies were excluded due to incomplete or ambiguous results, focus on Giardia species other than G. duodenalis, or exclusive focus on G. duodenalis-positive cases.

TABLE 1 Subgroup analysis of *G. duodenalis* molecular prevalence in rodents by publication year, continent, WHO region, country, sample size and rodent species.

Subgroup variable	Prevalence % (95% CI)	Heterogeneity (Q)	df (Q)	I ² (%)	<i>p</i> -value
Publication year					
2011-2014	13.1 (5.3-29.1)	34.4	3	91.3	p < 0.05
2015-2019	5.3 (1.8-14.6)	340.7	12	96.5	p < 0.05
2020-2024	7.6 (4.5-12.6)	207.3	33	84.1	p < 0.05
Continent					
Asia	5.1 (3.4-7.5)	111	25	77.5	p < 0.05
Europe	17.9 (9.8-30.5)	200.3	15	92.5	p < 0.05
South America	6.7 (2.5-16.9)	5.4	8	0	<i>p</i> > 0.05
WHO region					
AMR	6.7 (2.5-16.9)	5.4	8	0	<i>p</i> > 0.05
EMR	3.5 (1.3-9)	0.5	2	0	<i>p</i> > 0.05
EUR	17.9 (9.8-30.5)	200.3	15	92.5	p < 0.05
WPR	5.3 (3.5-8)	106.9	22	79.4	p < 0.05
Country					
Austria	34 (22.3-48)	0	0	0	p > 0.05
Belgium	26.2 (17.7-36.9)	0	0	0	p > 0.05
Brazil	6.7 (2.5-16.9)	5.4	8	0	p > 0.05
China ^a	5.5 (3.6-8.4)	101.8	21	79.4	<i>p</i> < 0.05
Germany	1.4 (0.6-3.2)	2	5	0	p > 0.05
Iran	3.5 (1.3-9)	0.5	2	0	p > 0.05
Italy	27.7 (21.2-35.3)	0.8	1	0	p > 0.05
Malaysia	3 (1.1-7.7)	0	0	0	p > 0.05
Romania	55.7 (50.4-60.9)	0	0	0	p > 0.05
Spain	24 (9.1-49.9)	42.6	4	90.6	<i>p</i> < 0.05
Sample size					
≤ 100	11.2 (6.7-18.1)	103.7	32	69.1	<i>p</i> < 0.05
> 100	5.3 (2.7-10.3)	509.8	17	96.7	<i>p</i> < 0.05
Rodent species					
Chinchilla	36.9 (19.4-58.8)	35	2	94.3	<i>p</i> < 0.05
Guinea pig	0.1 (0-39.1)	0	0	0	p > 0.05
Mouse	1.7 (0.7-3.9)	12	10	16.6	p > 0.05
Porcupine	23.1 (13.6-36.4)	0	0	0	p > 0.05
Rat	11.9 (8.1-17.2)	115.6	23	80.1	<i>p</i> < 0.05
Rodent spp.	12.5 (0.7-74.4)	17.6	1	94.3	<i>p</i> < 0.05
Squirrel	2.2 (0.6-7.3)	26	4	84.6	<i>p</i> < 0.05
Vole	1.1 (0.4-3)	1.3	3	0	p > 0.05

^aWorld Health Organization (WHO).

^bRegion of the Americas (AMR).

^cEastern Mediterranean Region (EMR).

^dEuropean Region (EUR).

^eWestern Pacific Region (WPR).

 $^{^{\}mathrm{f}}$ Due to CMA software limitations, a prevalence rate of 0.01% was used instead of 0% in calculations.

 $^{^{\}rm g}$ Of the 25 datasets from China, three were excluded from the meta-analysis due to single-sample size.

^hRodents with unspecified species or ambiguous information were included in the group of rodent spp.

ⁱChipmunk and marmot were included in the group of squirrels.

Group by Continent	Study name	St	atistics fo	r each st	udy	Event rate and 95% CI
		Event rate	Lower limit	Upper limit	p-Value	
sia	Zhao, 2015a	0.061	0.015	0.213	0.000	I I I
sia	Zhao, 2015b	0.066	0.037	0.115	0.000	
ia	Zhao, 2015c	0.032	0.004	0.196	0.001	
a	Deng, 2018	0.086	0.058	0.125	0.000	
a	Ma, 2018	0.108	0.083	0.139	0.000	
a	Tan, 2019	0.030	0.011	0.077	0.000	
1	Li, 2020a	0.096	0.052	0.169	0.000	
3	Li, 2020b	0.152	0.103	0.218	0.000	
3	Li, 2020c	0.001	0.000	0.331	0.029	
	Cui, 2021	0.123			0.029	Ta Ta
a -	*		0.091	0.165		
3	Asghari, 2022a	0.025	0.004	0.157	0.000	
1	Asghari, 2022b	0.025	0.004	0.157	0.000	
3	Asghari, 2022c	0.050	0.013	0.179	0.000	
3	Xu, 2022a	0.015	0.007	0.033	0.000	
9	Xu, 2022b	0.020	0.005	0.077	0.000	
a	Wu, 2022	0.047	0.025	0.088	0.000	•
а	Wang, 2022a	0.001	0.000	0.232	0.018	•
	Wang, 2022b	0.001	0.000	0.007	0.000	•
i	Wang, 2022c	0.001	0.000	0.391	0.036	•
a	Zou, 2022	0.400	0.192	0.652	0.442	-
a	Feng, 2024a	0.055	0.018	0.156	0.000	
1	Feng, 2024b	0.001	0.000	1.000	0.662	
	Feng, 2024c	0.001	0.000	1.000	0.758	•
ì	Feng, 2024f	0.001	0.000	0.941	0.162	•
ı	Feng, 2024h	0.001	0.000	0.674	0.076	
	Ma, 2024	0.008	0.002	0.032	0.000	
		0.051	0.034	0.075	0.000	
ре	Levecke, 2011	0.262	0.177	0.369	0.000	
оре	Veronesi, 2012	0.298	0.218	0.393	0.000	
ope	Fernandez-Alvarez, 2014a	0.103	0.059	0.333	0.000	
ope ope	Fernandez-Alvarez, 2014a Fernandez-Alvarez, 2014b	0.103	0.059	0.173	0.000	
•						
ope	Gherman, 2018	0.557	0.504	0.609	0.036	
ope	Helmy, 2018a	0.028	0.004	0.177	0.001	
ope	Helmy, 2018b	0.001	0.000	0.959	0.178	
ope	Helmy, 2018c	0.001	0.000	1.000	0.513	
ope	Helmy, 2018d	0.001	0.000	0.750	0.091	
ope	Helmy, 2018e	0.001	0.000	0.287	0.024	
ope	Helmy, 2018f	0.013	0.005	0.034	0.000	•
ope	Coppola, 2020	0.231	0.136	0.364	0.000	-
ope	Cervero-Arago, 2021	0.340	0.223	0.480	0.026	-
ope	Galan-Puchades, 2021	0.350	0.263	0.448	0.003	•
оре	Galan-Puchades, 2024a	0.700	0.376	0.900	0.220	-
оре	Galan-Puchades, 2024b	0.500	0.123	0.877	1.000	
ope		0.179	0.098	0.305	0.000	
ıth America	Fehlberg, 2021a	0.012	0.002	0.082	0.000	•
th America	Fehlberg, 2021b	0.077	0.011	0.391	0.017	
th America	Fehlberg, 2021c	0.001	0.000	1.000	0.469	
ıth America	Fehlberg, 2021d	0.001	0.000	1.000	0.513	
uth America	Fehlberg, 2021e	0.200	0.027	0.691	0.215	T
uth America	Fehlberg, 2021f	0.001	0.027	1.000	0.758	
uth America	Fehlberg, 2021g	0.001				
	Fehlberg, 2021h		0.000	1.000	0.662	
ith Amorica	rempers, 2021ff	0.142	0.019	0.580	0.097	
uth America uth America	Fehlberg, 2021i	0.001	0.000	1.000	0.662	

FIGURE 4 Pooled molecular prevalence of *G. duodenalis* in rodents across continents, with 95% confidence intervals, estimated using a random-effects model.

3.2 | Qualitative and Quantitative Features of the Selected Articles

This systematic review encompassed 23 studies featuring 54 datasets covering the years 2011–2024. The datasets included 26

from rats, 11 from mice, six from squirrels, four from voles, three from chinchillas, two from unidentified rodent species, and one dataset each from guinea pigs and porcupines. The datasets included 25 related to China, nine to Brazil, six to Germany, five to Spain, three to Iran, 2 to Italy, and one each to Austria, Belgium,

Group by	Study name	S	tatistics fo	or each st	udy	Event rate and 95% CI
Rodent species		Event rate	Lower limit	Upper limit	p-Value	
01.1.11					•	
Chinchilla	Levecke, 2011	0.262	0.177	0.369	0.000	
Chinchilla	Veronesi, 2012	0.298	0.218	0.393	0.000	
Chinchilla	Gherman, 2018	0.557	0.504	0.609	0.036	
Chinchilla		0.369	0.194	0.588	0.238	
Guinea pig	Wang, 2022c	0.001	0.000	0.391	0.036	
Guinea pig		0.001	0.000	0.391	0.036	
Mouse	Fernandez-Alvarez, 2014b	0.018	0.006	0.055	0.000	
Mouse	Zhao, 2015c	0.032	0.004	0.196	0.001	
Mouse	Helmy, 2018a	0.028	0.004	0.177	0.001	
Mouse	Helmy, 2018b	0.001	0.000	0.959	0.178	1 1 1 1
Mouse	Helmy, 2018c	0.001	0.000	1.000	0.513	
Mouse	Fehlberg, 2021b	0.077	0.011	0.391	0.017	
Mouse	Fehlberg, 2021c	0.001	0.000	1.000	0.469	
Mouse	Fehlberg, 2021d	0.001	0.000	1.000	0.513	
Mouse	Fehlberg, 2021f	0.001	0.000	1.000	0.758	
Mouse	Asghari, 2022a	0.025	0.004	0.157	0.000	•
Mouse	Wang, 2022b	0.001	0.000	0.007	0.000	•
Mouse		0.017	0.007	0.039	0.000	•
Porcupine	Coppola, 2020	0.231	0.136	0.364	0.000	+
Porcupine		0.231	0.136	0.364	0.000	+
Rat	Fernandez-Alvarez, 2014a	0.103	0.059	0.173	0.000	
Rat	Zhao, 2015a	0.061	0.015	0.213	0.000	
Rat	Zhao, 2015b	0.066	0.037	0.115	0.000	
Rat	Ma, 2018	0.108	0.083	0.139	0.000	
Rat	Li, 2020a	0.096	0.052	0.169	0.000	
Rat	Li, 2020b	0.152	0.103	0.218	0.000	
Rat	Li, 2020c	0.001	0.000	0.331	0.029	
Rat	Fehlberg, 2021a	0.012	0.002	0.082	0.000	
Rat	Fehlberg, 2021e	0.200	0.027	0.691	0.215	
Rat	Fehlberg, 2021g	0.001	0.000	1.000	0.662	
Rat	Fehlberg, 2021h	0.142	0.019	0.580	0.097	
Rat	Fehlberg, 2021i	0.001	0.000	1.000	0.662	
Rat	Cervero-Arago, 2021	0.340	0.223	0.480	0.026	
Rat	Galan-Puchades, 2021	0.350	0.263	0.448	0.003	•
Rat	Cui, 2021	0.123	0.091	0.165	0.000	
Rat	Asghari, 2022b	0.025	0.004	0.157	0.000	
Rat	Asghari, 2022c	0.050	0.013	0.179	0.000	
Rat	Wu, 2022	0.047	0.025	0.088	0.000	
Rat	Wang, 2022a	0.001	0.000	0.232	0.018	
Rat	Feng, 2024a	0.055	0.018	0.156	0.000	T ₁
Rat	Feng, 2024b	0.001	0.000	1.000	0.662	
Rat	Feng, 2024c	0.001	0.000	1.000	0.758	
Rat	Galan-Puchades, 2024a	0.700	0.376	0.900	0.220	T _
Rat	Galan-Puchades, 2024b	0.500	0.123	0.877	1.000	
Rat	Guian i dellades, 20240	0.119	0.123	0.877	0.000	T T
	Tan, 2019	0.030	0.081	0.172	0.000	
Rodent spp. Rodent spp.		0.400	0.011	0.652	0.442	
	Zou, 2022				0.442	
Rodent spp. Squirrel	Deng 2018	0.125 0.086	0.007 0.058	0.744 0.125	0.205	
•	Deng, 2018					
Squirrel	Xu, 2022a	0.015	0.007 0.005	0.033	0.000	
Squirrel	Xu, 2022b	0.020		0.077	0.000	
Squirrel	Feng, 2024h	0.001	0.000	0.674	0.076	
iquirrel	Ma, 2024	0.008	0.002	0.032	0.000	
Squirrel		0.022	0.006	0.073	0.000	
/ole	Helmy, 2018d	0.001	0.000	0.750	0.091	
/ole	Helmy, 2018e	0.001	0.000	0.287	0.024	
Vole	Helmy, 2018f	0.013	0.005	0.034	0.000	
/ole	Feng, 2024f	0.001	0.000	0.941	0.162	
/ole		0.011	0.004	0.030	0.000	

FIGURE 5 Pooled molecular prevalence of *G. duodenalis* in rodents by species, with 95% confidence intervals, estimated using a random-effects model.

Malaysia, and Romania. Sample sizes ranged from 1 to 1027 rodent samples, but studies with a sample size of one were excluded from the statistical analysis. Quality assessment with the JBI checklist indicated that nine papers were of high quality (> 6 points) and 14 had moderate quality (4–6 points) (Supplementary Table 1).

3.3 | Pooled Molecular Prevalence of G. duodenalis in Rodents

The pooled molecular prevalence of *G. duodenalis* in rodents was 7.4% (95% CI: 4.8–11.4%), showing substantial heterogeneity

among included studies (Q = 618.2, I^2 = 91.9%, $p \le 0.001$) (Figure 2).

while only assemblage A was identified in South America (Brazil) (Figure 6).

3.4 | Sensitivity Analysis

The sensitivity analysis revealed that removing individual papers/datasets on *G. duodenalis* infection rates in rodents did not significantly alter the final molecular prevalence (Figure 3).

3.5 | Pooled Molecular Prevalence of *G. duodenalis* in Rodents Based on Evaluated Subgroups

The subgroup analysis outcomes are presented in Table 1 and Supplementary Figures 1-4. In brief, the highest pooled molecular prevalence of G. duodenalis in rodents was observed between 2011 and 2014 at 13.1% (95% CI: 5.3-29.1%), while the lowest was reported from 2015 to 2019 at 5.3% (95% CI: 1.8-14.6%). Geographically, the highest pooled molecular prevalence occurred in rodents from Europe and the EUR WHO region, reaching 17.9% (95% CI: 9.8-30.5%) (Figure 4). Among evaluated countries, Romania (55.7%), Austria (34%), Italy (27.7%), Belgium (26.2%), and Spain (24%) reported the highest infection rates. Studies with fewer than 100 samples showed a higher prevalence (11.2%, 95% CI: 6.7-18.1%) compared to those with larger sample sizes (5.3%, 95% CI: 2.7-10.3%). Species-specific data revealed the highest infection rates in chinchillas (36.9%) and porcupines (23.1%), though these findings are based on very limited datasets (Figure 5).

3.6 | Assemblage/Sub-Assemblage Distribution of G. duodenalis in Rodents

Among the eight reported *G. duodenalis* assemblages (A-H), six assemblages (A-E and G) and four sub-assemblages (AI, AII, BIII, and BIV) were found in rodents. Zoonotic assemblage B and rodent-specific assemblage G were the most frequently detected in rodents (Table 2 and Table 3).

3.7 | Assemblages Distribution of *G. duodenalis* by Country and Rodent Species

In brief, China contributed the largest number of molecular datasets (n=25) and rodent samples (n=4,009). The greatest genetic diversity was observed in China (A, B, E, G) and Belgium (A, B, C, E), with assemblage B being the most prevalent. Assemblage D was found exclusively in Romania, while assemblage C was reported from Belgium and Italy. The highest assemblage diversity was observed in chinchillas (five: A–E), squirrels (four: A, B, E, G), and rats (three: A, B, G) (Table 3).

3.8 | Assemblages Distribution of G. duodenalis by Continent

In brief, assemblages C, D, G, and most occurrences of E, B, and A were reported from Europe; C and D were absent in Asia. In contrast, most reports of assemblage G originated from Asia,

4 | Discussion

Prevalence-based evaluations and the distribution of *G. duode-nalis* assemblages/sub-assemblages in rodents are essential for understanding the epidemiology of *G. duodenalis*, a protozoan parasite that affects both animal and human health (Helmy et al. 2018; Li et al. 2023). Hence, this systematic review and meta-analysis aimed to determine the global molecular prevalence and genotypic distribution of *G. duodenalis* in rodents, based exclusively on studies using molecular diagnostic techniques.

Global meta-analyses on the occurrence of *G. duodenalis* in animals are scarce. However, the prevalence of this parasitic protozoan has been reported as 22% (95% CI: 17–28%) in cattle (Taghipour et al. 2022), 15.2% (95% CI: 13.8–16.7%) in dogs, 12% (95% CI: 9.2–15.3%) in cats (Bouzid et al. 2015), and 9.1% (95% CI: 5.6–14.3%) in pigs (Asghari et al. 2023). Despite variations in study methods, geographical locations, and sample sizes, the reported prevalence of 7.4% of *G. duodenalis* in rodents is relatively low compared to other animals. The sensitivity analysis revealed no outlier data among the included studies that could significantly impact the final molecular prevalence of *G. duodenalis* in rodents. This finding underscores the robustness of the analysis and reinforces the reliability of the estimated prevalence rates.

Analysis of subgroup prevalence revealed no distinct trend in G. duodenalis infection rates among rodents over the years. The highest molecular prevalence was recorded between 2011 and 2014 at 13.1% (95% CI: 5.3-29.1%), while the lowest occurred from 2015 to 2019 at 5.3% (95% CI: 1.8-14.6%). Temporal shifts in infection rates may correlate with environmental factors and changes in rodent habitats. Rodents in Europe and the EUR WHO region exhibited the highest pooled molecular prevalence at 17.9% (95% CI: 9.8-30.5%). Notably, countries such as Romania (55.7%, 95% CI: 50.4-60.9%), Austria (34%, 95% CI: 22.3-48%), Italy (27.7%, 95% CI: 21.2-35.3%), Belgium (26.2%, 95% CI: 17.7-36.9%), and Spain (24%, 95% CI: 9.1-49.9%) reported the highest infection rates of G. duodenalis in rodents. European countries showed a higher pooled molecular prevalence of G. duodenalis in rodents, suggesting that varying ecological conditions and public health practices may affect its spread among rodent populations. Of note, most of these findings are derived from single studies or a limited number of investigations; therefore, they should be interpreted with caution. Based on sample size, the pooled molecular prevalence of G. duodenalis in rodents was 5.3% (95% CI: 2.7-10.3%) in studies with more than 100 samples, compared to 11.2% (95% CI: 6.7-18.1%) in studies with fewer than 100 samples. This difference in prevalence rates suggests that sample size has a significant impact on the observed prevalence. Larger sample sizes tend to provide more stable and reliable estimates, reducing the influence of random variation. The narrower confidence interval in studies with sample sizes over 100 further supports this notion. The higher molecular prevalence observed in smaller studies might be due to overestimation resulting from chance or specific characteristics of the limited number of rodents examined.

TABLE 2 | The main characteristics of 23 molecular studies (54 datasets) on the molecular prevalence and assemblage/sub-assemblage distribution of G. duodenalis in rodents.

Levecke, 2011 Veronesi, 2012	Host's common name	Host's scientific name	tested	Country	no.	no.	(%)	Assemblages	assemblages
Veronesi, 2012	Long-tailed chinchilla	Chinchilla lanigera	2007	Belgium	08	21	26.2	A, B, C, E	AI, AII, BIV, BIV/BIII
	Long-tailed chinchilla	Chincilla lanigera	2010	Italy	104	31	29.8	B, C	I
Fernandez-Alvarez, 2014a	Black rat	Rattus rattus	2007–2011	Spain	116	12	10.3	G, B	BIV
Fernandez-Alvarez, 2014b	House mouse	Mus musculus	2007–2011	Spain	165	3	1.8	Ŋ	I
Zhao, 2015a	Tanezumi rat	Rattus tanezumi	UC	China	33	2	6.1	Ŋ	I
Zhao, 2015b	Brown rat	Rattus norvegicus	UC	China	168	11	9.9	Ŋ	I
Zhao, 2015c	House mouse	Mus musculus	UC	China	31	1	3.2	Ŋ	I
Gherman, 2018	long-tailed chinchilla	Chinchilla lanigera	UC	Romania	341	190	55.7	B, D, E	BIII, BIV
Deng, 2018	Chipmunk	Eutamias asiaticus	2016–2017	China	279	24	8.6	A, G	I
Helmy, 2018a	Striped field mouse	Apodemus agrarius	2011–2012	Germany	35	1	2.8	A	I
Helmy, 2018b	Yellow-necked mouse	Apodemus flavicollis	2011–2012	Germany	38	0	0	I	I
Helmy, 2018c	Wood mouse	Apodemus sylvaticus	2011–2012	Germany	6	0	0	I	I
Helmy, 2018d	Short-tailed field vole	Microtus agrestis	2011–2012	Germany	09	0	0	I	I
Helmy, 2018e	Common vole	Microtus arvalis	2011–2012	Germany	107	0	0	I	I
Helmy, 2018f	Bank vole	Myodes glareolusv	2011–2012	Germany	301	4	1.3	A, B	I
Ma, 2018	Bamboo rat	Rhizomys sinensis	2017	China	480	52	10.8	В	I
Tan, 2019	Rodent spp.	I	2011	Malaysia	134	4	С	В	I
Li, 2020a	Wistar rat	I	2019	China	104	10	9.6	Ŋ	I
Li, 2020b	Sprague-dawley rat	I	2019	China	151	23	15.2	Ŋ	I
Li, 2020c	Spontaneously hypertensive rat	I	2019	China	100	0	0	I	I
Coppola, 2020	Crested porcupine	Hystrix cristata	2018-2019	Italy	52	12	23.1	A, B	AII, BIV
Fehlberg, 2021a	Rice rat	Hylaeamys laticeps	2015-2016	Brazil	81	1	1.2	Ą	AI
Fehlberg, 2021b	Cursor grass mouse	Akodon cursor	2015-2016	Brazil	13	1	7.7	A	AI
Fehlberg, 2021c	Atlantic forest climbing mouse	Rhipidomys mastacalis	2015-2016	Brazil	11	0	0	I	I
Fehlberg, 2021d	Blackish grass mouse	Thaptomys nigrita	2015-2016	Brazil	6	0	0	I	I
Fehlberg, 2021e	Rice rat	Oecomys catherinae	2015-2016	Brazil	5	1	20	A	AI

Author, year	Host's common name	Host's scientific name	Time	Country	Total no.	Infected no.	Prevalence (%)	Assemblages	Sub- assemblages
Fehlberg, 2021f	Caatinga vesper mouse	Calomys expulsus	2015–2016	Brazil	2	0	0	I	-
Fehlberg, 2021g	Rice rat	Cerradomys subflavus	2015-2016	Brazil	4	0	0	I	ı
Fehlberg, 2021h	Rice rat	Oligoryzomys nigripes	2015-2016	Brazil	7	1	14.2	A	AI
Fehlberg, 2021i	Rice rat	Euryoryzomys russatus	2015-2016	Brazil	4	0	0	I	I
Cervero-Arago, 2021	Brown rat	Rattus norvegicus	2017	Austria	50	17	34	A, G	AI, AII
Galan-Puchades, 2021	Brown rat	Rattus norvegicus	2016-2017	Spain	100	35	35	I	ı
Cui, 2021	Coypus/swamp rats	Myocastor coypus	UC	China	308	38	12.3	A, B	AI, BIV
Asghari, 2022a	House mouse	Mus musculus	2021	Iran	40	1	2.5	Ŋ	ı
Asghari, 2022b	Brown rat	Rattus norvegicus	2021	Iran	40	1	2.5	Ŋ	ı
Asghari, 2022c	Black rat	Rattus rattus	2021	Iran	40	2	5	B, G	ı
Xu, 2022a	Himalayan marmot	Marmota himalayana	2017	China	399	9	1.5	A, B, E	I
Xu, 2022b	Alashan ground squirrel	Spermophilus alashanicus	2017	China	66	7	7	В	I
Wu, 2022	Brown rat	Rattus norvegicus	2010-2021	China	191	6	4.7	Ŋ	ı
Wang, 2022a	Laboratory rat	I	2019-2020	China	118	0	0	I	ı
Wang, 2022b	Laboratory mouse	I	2019-2020	China	1027	0	0	I	I
Wang, 2022c	Laboratory guinea pigs	I	2019-2020	China	92	0	0	I	I
Zou, 2022	Rodent spp.	I	nc	China	15	9	40	I	I
Feng, 2024a	Brown rat	Rattus norvegicus	2018-2021	China	55	8	5.5	G, A	I
Feng, 2024b	Lesser ricefield rat	Rattus losea	2018-2021	China	4	0	0	I	I
Feng, 2024c	Greater bandicoot rat	Bandicota indica	2018-2021	China	2	0	0	I	I
Feng, 2024d	Chestnut white-bellied rat	Niviventer fulvescens	2018-2021	China	1	0	0	I	I
Feng, 2024e	Plateau zokor	Myospalax fontanieri	2018-2021	China	1	0	0	I	I
Feng, 2024f	Yunnan red-backed vole	Eothenomys miletus	2018-2021	China	41	0	0	I	I
Feng. 20249	Pallas's somirrel	Callosciurus erythraeus	2018-2021	China	-	0	C	ı	

TABLE 2 | (Continued)

TABLE 2 | (Continued)

Author, year	Host's common name	Host's scientific name	Time tested	Country	Total no.	Infected no.	Total Infected Prevalence no. (%)	Assemblages	Sub- assemblages
Feng, 2024h	Long-tailed ground squirrel Spermophilus undulatus		2018–2021	China	99	0	0	I	I
Ma, 2024	Himalayan marmot	Marmota himalayana	2017–2019	China	243	2	8.0	A	I
Galan-Puchades, 2024a	Brown rat	Rattus norvegicus	2021-2023	Spain	10	7	20	I	I
Galan-Puchades, 2024b	Black rat	Rattus rattus	2021-2023	Spain	4	2	50	I	I

This table includes only data related to G. duodenalis as confirmed in each study. For studies that examined multiple rodent species or datasets, only those in which G. duodenalis was specifically identified (typically through Some studies have performed molecular analysis on a portion of microscopically positive cases, rather than all samples. Hence, molecular prevalence was calculated based on the number of positive samples using only the molecular methods) were included. If Giardia spp. was reported without species-level confirmation in certain rodent species or datasets within the same study, those data were excluded from this table/study. molecular method.

⁻Due to CMA software limitations, a prevalence rate of 0.01% was used instead of 0% in calculations, and three datasets from China with a total sample size of one were excluded from the analysis

G. duodenalis showed the highest molecular prevalence in chinchillas (36.9%) and porcupines (23.1%). However, these findings are based on very limited data (three studies for chinchillas and one for porcupines), preventing any broader statistical or epidemiological conclusions. It remains unclear whether this reflects a true epidemiological trend or simply a sampling artefact. Some studies included only one or a few rodents per species, whereas others had sample sizes exceeding 1000 specimens, notably in China, which also reported the greatest assemblage diversity. This likely reflects a sampling bias, rather than true geographic variation in genotypic distribution.

Notably, of the eight reported G. duodenalis assemblages (A-H) (Wang et al. 2014; Ryan et al. 2021), six assemblages (A-E and G) and four sub-assemblages (AI, AII, BIII, and BIV) have been found in rodents. Assemblage B and rodent-specific assemblage G were the most frequently detected in rodents. Notably, the highest assemblage diversity was observed in chinchillas (five: A-E), squirrels (four: A, B, E, G), and rats (three: A, B, G). Sub-assemblage AI was reported in both humans and animals, while sub-assemblage AII is primarily associated with humans. Sub-assemblages BIII and BIV were reported in humans as well as companion and wild animals (Mbae et al. 2016; Pipiková et al. 2020). Two of these assemblages, A and B, have significant zoonotic transmission potential and can lead to human infections and symptoms (Zajaczkowski et al. 2021). Although, there have been sporadic reports of human infection with other assemblages (Soliman et al. 2011; Zahedi et al. 2017; Pipiková et al. 2020). The zoonotic nature of assemblages A and B highlights the importance of understanding transmission dynamics in both rodent populations and human interactions with these animals. Surveillance efforts are crucial in regions where these assemblages are prevalent, as they can inform public health strategies aimed at reducing the risk of human infections. In addition, environmental factors such as habitat destruction and climate change may influence the distribution of G. duodenalis assemblages in wildlife, thereby affecting their potential to spill over into human populations. Of note, some analyses in this study rely on a limited number of studies/datasets, necessitating cautious interpretation.

This systematic review and meta-analysis revealed considerable geographic variation in the prevalence and genotypic diversity of G. duodenalis assemblages among rodent populations across different countries. China, with the largest number of datasets (25) and the highest sample size (4,009 rodents), reported the greatest assemblage diversity (A, B, E, and G), while Belgium, despite having only a single study with a limited number of samples, also exhibited notable genetic diversity (A, B, C, and E). These findings suggest that the observed diversity in China may be influenced more by sampling intensity than by actual ecological variation, highlighting a potential sampling bias. In contrast, the unexpected diversity reported from countries with minimal data, such as Belgium, raises questions about the local transmission dynamics and host-specific factors contributing to assemblage distribution. Assemblage B was the most frequently detected across most countries, although its prevalence varied widely, possibly reflecting differences in ecological conditions, rodent species, or methodological approaches. The occurrence of unique assemblages in specific regions (e.g., D in Romania, C in Belgium and Italy) further emphasises the need for more

TABLE 3 Assemblage distribution of *G. duodenalis* in rodents by countries and rodent species.

					Repo	rted a	ssem	blages	s (no.)	
Variables	Dataset no.	Total samples (no.)	Infected samples (no.)	A	В	С	D	E	G	ND
Countries										
Austria	1	50	17	9	_	_	_	_	3	5
Belgium	1	80	21	11	18	15	_	2	_	_
Brazil	9	136	4	4	_	_	_	_	_	_
China	25	4,009	189	19	94	_	_	1	69	6
Germany	6	550	5	3	2	_	_	_	_	_
Iran	3	120	4	_	1	_	_	_	3	_
Italy	2	156	43	2	41	2	_	_	_	-
Malaysia	1	134	4	_	1	_	_	_	_	3
Romania	1	341	190	_	151	-	33	6	_	-
Spain	5	395	59	_	1	-	_	_	14	44
Total no.	54	5,971	536	48	309	17	33	9	89	58
Species										
Chinchilla	3	525	242	11	198	17	33	8	_	_
Guinea pig	1	92	0	_	_	_	_	_	_	_
Mouse	11	1,380	7	2	_	_	_	_	5	_
Porcupine	1	52	12	2	12	_	_	_	_	_
Rat	26	2,177	227	15	90	_	_	_	73	49
Rodent spp.	2	149	10	_	1	_	_	_	_	9
Squirrel	6	1,087	34	16	6	_	_	1	11	_
Vole	4	509	4	2	2	_	_	_	_	_
Total no.	54	5,971	536	48	309	17	33	9	89	58

^aThe plateau zokor was placed in the group of rats.

balanced and comprehensive sampling efforts to better understand the global distribution and epidemiological significance of *G. duodenalis* in rodent hosts.

Analysis of *G. duodenalis* assemblages across continents showed that assemblages C, D, G, and most occurrences of E, B, and A were reported from Europe; C and D were absent in Asia. In contrast, most reports of assemblage G originated from Asia, while only assemblage A was identified in South America (Brazil) (Fehlberg et al. 2021). Overall, the lack of data from North America, Oceania, and Africa indicates a significant gap in our understanding of *G. duodenalis* genetic diversity worldwide. Assemblages C and D, typically associated with canids (Adell-Aledón et al. 2018), were identified in rodents from Europe but not from Asia. This geographic discrepancy may stem from regional differences in host species, environmental exposure, or diagnostic methodologies, but more plausibly reflects gaps in sampling rather than biological absence. Interestingly, most assemblage types (excluding the feline-specific F and the pinniped-associated

H) were identified in rodents, yet the majority of studies did not report sub-assemblage level data, which is essential for assessing zoonotic potential more precisely. Overall, much remains to be explored regarding the epidemiology and genetic diversity of *G. duodenalis* in rodents. As the number of studies increases across various geographic regions and rodent species, shifts in infection prevalence, changes in the distribution of assemblages and sub-assemblages, and even the identification of novel assemblages, such as assemblage F, may be observed.

The health status of the sampled rodents was rarely reported, and there was little to no information on whether rodents were sampled randomly or due to clinical suspicion. This undermines the accuracy of reported prevalence rates and limits the ecological interpretation of the findings. Similarly, the habitat characteristics, immunological status, and interaction frequency with human populations were generally missing from the studies reviewed. These are critical factors in evaluating the real-world risk of zoonotic transmission.


^bRodents with unspecified species or ambiguous information were included in the group of rodent spp.

^cChipmunk and marmot were included in the group of squirrels.

^dND, Not determined.

 $^{^{\}mathrm{e}}$ Of the 25 datasets from China, three were excluded from the meta-analysis due to single-sample size.

^fWhen the number of assemblages exceeds the number of infected cases, mixed infections are present. Conversely, when the number of assemblages is less than the number of infected cases, this reflects either limited access to the full text or challenges in genotyping/sequencing.

FIGURE 6 Assemblage distribution of *G. duodenalis* in rodents by continents. The numbers in the circle centres represent the total count of each assemblage isolated from rodents, while the percentages around the circles indicate the prevalence rate of each assemblage per continent.

Preventive measures should focus on standardised monitoring of rodent populations in urban and peri-urban areas, particularly where human-animal interactions are frequent. Environmental surveillance, sanitation improvement, and rodent population control could reduce the potential risk of cyst contamination in water and food sources.

In light of the evidence, the role of rodents in the transmission cycle of human giardiasis should be considered limited but not negligible. Their capacity to act as reservoirs may be context-dependent, influenced by local ecological and social determinants. However, current data are insufficient to support any broad claims regarding rodents as a significant source of human infection.

5 | Conclusion

While the presence of zoonotic *G. duodenalis* assemblages in rodents is of scientific interest, the low overall prevalence, lack of consistent sampling protocols, unknown health status of hosts, and insufficient ecological context preclude a definitive conclusion about their significance as reservoirs for human infection. This review should be considered a preliminary exploration, a 'tip of the iceberg' of the potential role of rodents in giardiasis epidemiology. Future research should incorporate well-designed epidemiological studies with large and ecologically diverse rodent populations, include randomised and stratified sampling, and utilise sub-assemblage level genotyping. Stakeholders, including public health authorities, environmental agencies, and zoonotic disease surveillance units, should prioritise integrated One

Health approaches, promoting cross-sectoral collaboration to assess and mitigate the risks posed by wildlife reservoirs such as rodents.

Author Contributions

Ali Asghari and Tahereh Davoodi planned and designed the study. Ali Asghari, Jalil Feizi, Kambiz Karimi, Mohammad Reza Mohammadi, Esfandiar Azizi, Zahra Bahramdoost, Ali Pouryousef and Fariba Shadfar were involved in the methodology and data extraction. Ali Asghari conducted the statistical analysis. Ali Asghari, Tahereh Davoodi, Jalil Feizi, and Fariba Shadfar wrote the manuscript and revised it. All authors have read and approved the final manuscript.

Acknowledgements

The authors have nothing to report.

Conflicts of Interest

The authors declare no conflicts of interest

Data Availability Statement

The datasets used and/or analysed during the current study are available in the online version.

Peer Review

The peer review history for this article is available at https://www.webofscience.com/api/gateway/wos/peer-review/10.1002/vms3.70546.

References

- Adam, R. D. 2001. "Biology of Giardia Lamblia." Clinical Microbiology Reviews 14, no. 3: 447–475.
- Adell-Aledón, M., P. C. Köster, L. A. de, et al. 2018. "Occurrence and Molecular Epidemiology of *Giardia duodenalis* Infection in Dog Populations in Eastern Spain." *BMC Veterinary Research* 14: 1–11.
- Argüello-García, R., and M. G. Ortega-Pierres. 2021. "Giardia Duodenalis Virulence—"to be, or Not to be."." Current Tropical Medical Reports 8, no. 4: 246–256.
- Asghari, A., M. Ebrahimi, L. Shamsi, A. Sadrebazzaz, and M. Shams. 2023. "Global Molecular Prevalence of *Giardia Duodenalis* in Pigs (*Sus domesticus*): A Systematic Review and Meta-Analysis." *Heliyon* 9, no. 2: e13243
- Asghari, A., M. H. Motazedian, Q. Asgari, et al. 2022. "Occurrence, Genetic Characterization, and Zoonotic Importance of *Giardia duodenalis* in Various Species of Rodents (*Mus musculus, Rattus norvegicus*, and *Rattus rattus*)." Comparative Immunology, Microbiology and Infectious Diseases 85: 101812.
- Ayed, L. B., S. A. A. Ahmed, S. Boughattas, and P. Karanis. 2024. "Waterborne *Cryptosporidium* Species and *Giardia Duodenalis* in Resources of MENA: A Systematic Review and Meta-Analysis." *Journal of Water and Health* 22, no. 8: 1491–1515.
- Bouzid, M., K. Halai, D. Jeffreys, and P. R. Hunter. 2015. "The Prevalence of *Giardia* Infection in Dogs and Cats, a Systematic Review and Meta-Analysis of Prevalence Studies From Stool Samples." *Veterinary Parasitology* 207, no. 3–4: 181–202.
- Cervero-Aragó, S., A. Desvars-Larrive, G. Lindner, R. Sommer, I. Häfeli, and J. Walochnik. 2021. "Surface Waters and Urban Brown Rats as Potential Sources of Human-Infective *Cryptosporidium* and *Giardia* in Vienna, Austria." *Microorganisms* 9, no. 8: 1596.
- Coppola, F., M. Maestrini, F. Berrilli, I. G. Procesi, A. Felicioli, and S. Perrucci. 2020. "First Report of *Giardia Duodenalis* Infection in the Crested Porcupine (*Hystrix cristata* L., 1758)." *International Journal of Parasitology: Parasites and Wildlife* 11: 108–113.
- Cui, Z., D. Wang, W. Wang, et al. 2021. "Occurrence and Multi-Locus Analysis of *Giardia Duodenalis* in Coypus (*Myocastor coypus*) in China." *Pathogens* 10, no. 2: 179.
- Dalecky, A., I. Sow, A. A. I. Danzabarma, et al. 2024. "From Problem to Progress: Rodent Management in Agricultural Settings of sub-Saharan Africa and Calling for an Urban Perspective." *Crop Protection* 181: 106673.
- Deng, L., R. Luo, H. Liu, et al. 2018. "First Identification and Multilocus Genotyping of *Giardia duodenalis* in Pet Chipmunks (*Eutamias asiaticus*) in Sichuan Province, Southwestern China." *Parasites and Vectors* 11: 1–5.
- Fehlberg, H. F., C. Matos Ribeiro, A. Brito Junior P de, et al. 2021. "Detection of *Cryptosporidium* spp. And *Giardia Duodenalis* in Small Wild Mammals in Northeastern Brazil." *PLoS ONE* 16, no. 8: e0256199.
- Feng, K., S. Yang, Y. Xu, et al. 2024. "Molecular Characterization of *Cryptosporidium* spp., *Giardia* spp. And *Enterocytozoon Bieneusi* in Eleven Wild Rodent Species in China: Common Distribution, Extensive Genetic Diversity and High Zoonotic Potential." *One Heal* 18: 100750.
- Fernandez-Alvarez, A., A. Martin-Alonso, N. Abreu-Acosta, et al. 2014. "Identification of a Novel Assemblage G Subgenotype and a Zoonotic Assemblage B in Rodent Isolates of *Giardia duodenalis* in the Canary Islands, Spain." *Parasitology* 141, no. 1: 206–215.
- Galán-Puchades, M. T., C. Gosálvez, M. Trelis, et al. 2023. "Parasite Fauna and Coinfections in Urban Rats Naturally Infected by the Zoonotic Parasite *Angiostrongylus cantonensis*." *Pathogens* 13, no. 1: 28.
- Galán-Puchades, M. T., M. Trelis, S. Sáez-Durán, et al. 2021. "One Health Approach to Zoonotic Parasites: Molecular Detection of Intestinal Protozoans in an Urban Population of Norway Rats, *Rattus norvegicus*, in Barcelona, Spain." *Pathogens* 10, no. 3: 311.

- Gherman, C. M., Z. Kalmár, A. Györke, and V. Mircean. 2018. "Occurrence of *Giardia Duodenalis* Assemblages in Farmed Long-tailed Chinchillas *Chinchilla lanigera* (Rodentia) From Romania." *Parasites and Vectors* 11: 1–6
- Hatam-Nahavandi, K., E. Ahmadpour, M. Badri, et al. 2025. "Global Prevalence of *Giardia* Infection in Nonhuman Mammalian Hosts: A Systematic Review and Meta-Analysis of Five Million Animals." *PLoS Neglected Tropical Diseases* 19, no. 4: e0013021.
- Helmy, Y. A., N. G. Spierling, S. Schmidt, et al. 2018. "Occurrence and Distribution of *Giardia* Species in Wild Rodents in Germany." *Parasites and Vectors* 11: 1–13.
- Heng, Z.-J., J.-F. Yang, X.-Y. Xie, et al. 2022. "Prevalence and Multilocus Genotyping of *Giardia Duodenalis* in Holstein Cattle in Yunnan, China." *Frontiers in Veterinary Science* 9: 949462.
- Huey, C. S., M. A. K. Mahdy, H. M. Al-Mekhlafi, et al. 2013. "Multilocus Genotyping of *Giardia duodenalis* in Malaysia." *Infection, Genetics and Evolution* 17: 269–276.
- Lalle, M., and S. M. Caccio. 2023. "Giardiasis From 41." Zoonoses Infection Affecting Humans and Animals 1285.
- Levecke, B., L. Meulemans, T. Dalemans, S. Casaert, E. Claerebout, and T. Geurden. 2011. "Mixed *Giardia Duodenalis* Assemblage A, B, C and E Infections in Pet Chinchillas (*Chinchilla lanigera*) in Flanders (Belgium)." *Veterinary Parasitology* 177, no. 1–2: 166–170.
- Li, J., P. Lang, M. Huang, et al. 2020. "Molecular Characterization of *Cryptosporidium* spp. And *Giardia Duodenalis* in Experimental Rats in China." *Parasitology International* 77: 102127.
- Li, J., H. Qin, X. Li, and L. Zhang. 2023. "Role of Rodents in the Zoonotic Transmission of Giardiasis." *One Heal* 16: 100500.
- Ma, L., Y. Jian, W. Guanghua. et al. 2024. "The Prevalence of *Cryptosporidium* spp. And *Giardia Duodenalis* in *Marmota himalayana* (Rodentia: Sciuridae) in the Qinghai Tibetan Plateau Area, China." *Iranian Journal of Parasitology* 19, no. 2: 162–170.
- Ma, X., Y. Wang, H.-J. Zhang, H.-X. Wu, and G.-H. Zhao. 2018. "First Report of *Giardia Duodenalis* Infection in Bamboo Rats." *Parasites and Vectors* 11: 1–6.
- Mbae, C., E. Mulinge, F. Guleid, et al. 2016. "Molecular Characterization of *Giardia Duodenalis* in Children in Kenya." *BMC Infectious Diseases* [Electronic Resource] 16: 1–7.
- Mohammed Mahdy, A. K., Y. A. L. Lim, J. Surin, K. L. Wan, and M. S. H. Al-Mekhlafi. 2008. "Risk Factors for Endemic Giardiasis: Highlighting the Possible Association of Contaminated Water and Food." *Transactions of the Royal Society of Tropical Medicine and Hygiene* 102, no. 5: 465–470.
- Moher, D., L. Shamseer, M. Clarke, et al. 2015. "Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 Statement." *Systematic Reviews* 4, no. 1: 1–9.
- Munn, Z., S. Moola, D. Riitano, and K. Lisy. 2014. "The Development of a Critical Appraisal Tool for Use in Systematic Reviews Addressing Questions of Prevalence." *International Journal of Health Policy and Management* 3, no. 3: 123–128.
- Parsons, M. H., C. M. Jardine, M. S. Crowther, and C. G. Himsworth. 2020. "Trends in Urban Rodent Monitoring and Mitigation: Improving Our Understanding of Population and Disease Ecology, Surveillance and Control." Frontiers in Ecology and Evolution 7: 522.
- Pipiková, J., I. Papajová, V. Majláthová, et al. 2020. "First Report on *Giardia Duodenalis* Assemblage F in Slovakian Children Living in Poor Environmental Conditions." *Journal of Microbiology, Immunology and Infection* 53, no. 1: 148–156.
- Rezaie, N., M. Latifian, A. Ghasemi, et al. 2025. "Assessing the Diversity of Zoonotic Bacterial Agents in Rodents and Small Mammals in Iran." *European Journal of Public Health* 35, no. Supplement_1: i41-i47.
- Ryan, U., and A. Zahedi. 2019. "Molecular Epidemiology of Giardiasis From a Veterinary Perspective." *Advances in Parasitology* 106: 209–254.

Ryan, U. M., Y. Feng, R. Fayer, and L. Xiao. 2021. "Taxonomy and Molecular Epidemiology of *Cryptosporidium* and *Giardia*—a 50 Year Perspective (1971–2021)." *International Journal for Parasitology* 51, no. 13–14: 1099–1119.

Savioli, L., H. Smith, and A. Thompson. 2006. "Giardia and Cryptosporidium Join the 'Neglected Diseases Initiative.'." Trends in Parasitology 22, no. 5: 203–208.

Shehata, A. A., R. Parvin, S. Tasnim, P. M. Duarte, A. J. Rodriguez-Morales, and S. Basiouni. 2025. "The Hidden Threat: Rodent-Borne Viruses and Their Impact on Public Health." *Viruses* 17, no. 6: 809.

Soliman, R. H., I. Fuentes, and J. M. Rubio. 2011. "Identification of a Novel Assemblage B Subgenotype and a Zoonotic Assemblage C in human Isolates of *Giardia Intestinalis* in Egypt." *Parasitology International* 60, no. 4: 507–511.

Taghipour, A., M. Sharbatkhori, F. Tohidi, et al. 2022. "Global Prevalence of *Giardia Duodenalis* in Cattle: A Systematic Review and Meta-Analysis." *Preventive Veterinary Medicine* 203: 105632.

Tan, T. K., V. L. Low, W. H. Ng, et al. 2019. "Occurrence of Zoonotic *Cryptosporidium* and *Giardia duodenalis* Species/Genotypes in Urban Rodents." *Parasitology International* 69: 110–113.

Tijani, M. K., P. C. Köster, I. Guadano-Procesi, et al. 2023. "High Diversity of *Giardia Duodenalis* Assemblages and Sub-assemblages in Asymptomatic School Children in Ibadan, Nigeria." *Tropical Medicine and Infectious Disease* 8, no. 2: 152.

Veronesi, F., D. P. Fioretti, G. Morganti, et al. 2012. "Occurrence of *Giardia Duodenalis* Infection in Chinchillas (*Chincilla lanigera*) From Italian Breeding Facilities." *Research in Veterinary Science* 93, no. 2: 807–810.

Wang, H., G. Zhao, G. Chen, et al. 2014. "Multilocus Genotyping of *Giardia duodenalis* in Dairy Cattle in Henan, China." *PLoS ONE* 9, no. 6: e100453.

Wang, N., K. Wang, Y. Liu, et al. 2022. "Molecular Characterization of *Cryptosporidium* spp., *Enterocytozoon Bieneusi* and *Giardia Duodenalis* in Laboratory Rodents in China." *Parasite* 29: 46.

Wu, Y., L. Yao, H. Chen, et al. 2022. "Giardia Duodenalis in Patients With Diarrhea and Various Animals in North-eastern China: Prevalence and Multilocus Genetic Characterization." Parasites and Vectors 15, no. 1: 1–11.

Xu, J., H. Liu, Y. Jiang, et al. 2022. "Genotyping and Subtyping of *Cryptosporidium* spp. And *Giardia Duodenalis* Isolates From Two Wild Rodent Species in Gansu Province, China." *Scientific Reports* 12: 12178.

Yu, F., S. Amer, M. Qi, et al. 2019. "Multilocus Genotyping of *Giardia duodenalis* Isolated From Patients in Egypt." *Acta Tropica* 196: 66–71.

Zahedi, A., D. Field, and U. Ryan. 2017. "Molecular Typing of *Giardia Duodenalis* in Humans in Queensland-first Report of Assemblage E." *Parasitology* 144, no. 9: 1154–1161.

Zajaczkowski, P., R. Lee, S. M. Fletcher-Lartey, et al. 2021. "The Controversies Surrounding *Giardia Intestinalis* Assemblages A and B." *Current Research in Parasitology & Vector-Borne Diseases* 1: 100055.

Zhao, Z., R. Wang, W. Zhao, et al. 2015. "Genotyping and Subtyping of *Giardia* and *Cryptosporidium* Isolates From Commensal Rodents in China." *Parasitology* 142, no. 6: 800–806.

Zou, Y., X.-D. Li, Y.-M. Meng, X.-L. Wang, H.-N. Wang, and X.-Q. Zhu. 2022. "Prevalence and Multilocus Genotyping of *Giardia duodenalis* in Zoo Animals in Three Cities in China." *Parasitology Research* 121, no. 8: 2359–2366.

Supporting Information

Additional supporting information can be found online in the Supporting Information section.

Supplementary Fig. 1. The pooled molecular prevalence of G.

duodenalis in rodents based on publication years. Supplementary

Fig. 2. The pooled molecular prevalence of G. duodenalis in rodents based on the WHO regions. **Supplementary Fig. 3.** The

pooled molecular prevalence of G. duodenalis in rodents based on countries. **Supplementary Fig. 4**. The pooled molecular prevalence of G. duodenalis in rodents based on sample sizes. **Supplementary Table 1**. JBI critical appraisal checklist applied for included studies