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ABSTRACT

Background: Giardia duodenalis (also known as G. lamblia or G. intestinalis) is a globally distributed protozoan with zoonotic
potential. This systematic review and meta-analysis aimed to determine the global molecular prevalence and genotypic
distribution of G. duodenalis in rodents, based exclusively on studies using molecular diagnostic techniques.

Methods: A comprehensive literature search up to 15 October 2024, identified 23 eligible studies encompassing 54 datasets and
5971 rodent samples from 10 countries across three continents. Prevalence estimates were pooled using a random-effects model,
and heterogeneity was assessed via the I? statistic. Assemblage and sub-assemblage distributions were analysed across rodent
species and geographic regions.

Results: The pooled molecular prevalence of G. duodenalis in rodents was 7.4% (95% CI: 4.8-11.4%), with chinchillas (36.9%) and
porcupines (23.1%) showing the highest infection rates. Rodents were found to harbour six assemblages (A-E, G) and four sub-
assemblages (AI, AIL BIII, BIV) of G. duodenalis, with marked geographic variation. The highest pooled prevalence was observed
in Europe (17.9%; 95% CI: 9.8-30.5), where assemblages C, D, G, and most occurrences of E, B, and A were reported. Assemblages
C and D were entirely absent in Asia. In contrast, most reports of the rodent-specific assemblage G originated from Asia. South
America (represented solely by Brazil) reported only assemblage A. China contributed the largest dataset (n = 25) and sample size
(n = 4009), exhibiting high genetic diversity (A, B, E, G). Belgium also showed notable diversity (A, B, C, E), with assemblage B
being the most prevalent in both countries. Assemblage D was found exclusively in Romania, while assemblage C was reported
only in Belgium and Italy. Notably, the highest assemblage diversity was observed in chinchillas (five: A-E), squirrels (four: A, B,
E, G), and rats (three: A, B, G).

Conclusions: Although various rodent species, especially chinchillas, mice, porcupines, rats, squirrels, and voles, carry G.
duodenalis zoonotic assemblages (A and B), the overall molecular prevalence in rodents remains relatively low. Due to significant
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limitations in sampling design, methodological heterogeneity, limited ecological data, and unknown host health status, current
evidence is insufficient to confirm rodents as major zoonotic reservoirs. Standardised, large-scale molecular studies are needed to
clarify the epidemiological role of rodents in G. duodenalis transmission.

1 | Introduction

Giardia duodenalis (also known as G. lamblia or G. intestinalis) is
aflagellated protozoan parasite that colonises the gastrointestinal
system of various mammalian species, including humans (Adam
2001). It is considered one of the primary protozoan agents
responsible for parasitic diarrhoea globally and has been cate-
gorised as a neglected disease by the World Health Organization
due to its substantial impact on public health, especially in low-
resource regions (Savioli et al. 2006; Hatam-Nahavandi et al.
2025).

This parasite is widely recognised for causing numerous food-
borne and waterborne disease outbreaks across the globe, with
the extent of infection varying significantly among different
regions. Its transmission mainly occurs through the faecal-oral
route, typically via ingestion of food or water contaminated with
cysts, or through direct contact with infected individuals or
animals (Mohammed Mahdy et al. 2008; Ayed et al. 2024).

Sequence investigations of a number of genetic markers, such as
small-subunit rRNA (SSU rDNA), beta-giardin (bg), triosephos-
phate isomerase (tpi), and glutamate dehydrogenase (gdh),
revealed that G. duodenalis is classified into at least eight genetic
subgroups (assemblages A-H), each of which has distinctive host
preferences (Huey et al. 2013; Wang et al. 2014; Yu et al. 2019; Heng
et al. 2022; Tijani et al. 2023). Humans and other mammals are
home to zoonotic assemblages A and B; canids, hoofed animals,
cats, rodents, and pinnipeds are home to assemblages C/D, E,
F, G, and H, respectively (Ryan et al. 2021). Moreover, rodents
can harbour distinct species such as G. muris, G. microti, and
G. cricetidarum, which can be differentiated from G. duodenalis
(Ryan and Zahedi 2019; Argiiello-Garcia and Ortega-Pierres 2021;
Lalle and Caccio 2023).

Among the diverse range of animal hosts, rodents pose a notable
public health concern due to their widespread presence, fre-
quent proximity to human dwellings, and remarkable ability to
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FIGURE 1 |

Flowchart depicting the process of included studies in the present systematic review.

20f16

Veterinary Medicine and Science, 2025



Study name Statistics for each study

Event Lower Upper

Event rate and 95% CI

rate limit limit p-Value
Levecke, 2011 0.262 0.177 0.369 0.000
Veronesi, 2012 0.298 0.218 0.393 0.000
Fernandez-Alvarez, 2014a 0.103 0.059 0.173 0.000
Fernandez-Alvarez, 2014b 0.018 0.006 0.055 0.000
Zhao, 2015a 0.061 0.015 0.213 0.000
Zhao, 2015b 0.066 0.037 0.115 0.000
Zhao, 2015¢ 0.032 0.004 0.196 0.001
Gherman, 2018 0.557 0.504 0.609 0.036
Deng, 2018 0.086 0.058 0.125 0.000
Helmy, 2018a 0.028 0.004 0.177 0.001
Helmy, 2018b 0.001 0.000 0.959 0.178
Helmy, 2018c 0.001 0.000 1.000 0.513
Helmy, 2018d 0.001 0.000 0.750 0.091
Helmy, 2018e 0.001 0.000 0.287 0.024
Helmy, 2018f 0.013 0.005 0.034 0.000
Ma, 2018 0.108 0.083 0.139 0.000
Tan, 2019 0.030 0.011 0.077 0.000
Li, 2020a 0.096 0.052 0.169 0.000
Li, 2020b 0.152 0.103 0.218 0.000
Li, 2020c 0.001 0.000 0.331 0.029
Coppola, 2020 0.231 0.136 0.364 0.000
Fehlberg, 2021a 0.012 0.002 0.082 0.000
Fehlberg, 2021b 0.077 0.011 0.391 0.017
Fehlberg, 2021c 0.001 0.000 1.000 0.469
Fehlberg, 2021d 0.001 0.000 1.000 0.513
Fehlberg, 2021e 0.200 0.027 0.691 0.215
Fehlberg, 2021f 0.001 0.000 1.000 0.758
Fehlberg, 2021g 0.001 0.000 1.000 0.662
Fehlberg, 2021h 0.142 0.019 0.580 0.097
Fehlberg, 2021i 0.001 0.000 1.000 0.662
Cervero-Arago, 2021 0.340 0.223 0.480 0.026
Galan-Puchades, 2021 0.350 0.263 0.448 0.003
Cui, 2021 0.123 0.091 0.165 0.000
Asghari, 2022a 0.025 0.004 0.157 0.000
Asghari, 2022b 0.025 0.004 0.157 0.000
Asghari, 2022¢ 0.050 0.013 0.179 0.000
Xu, 2022a 0.015 0.007 0.033 0.000
Xu, 2022b 0.020 0.005 0.077 0.000
Wu, 2022 0.047 0.025 0.088 0.000
Wang, 2022a 0.001 0.000 0.232 0.018
Wang, 2022b 0.001 0.000 0.007 0.000
Wang, 2022c 0.001 0.000 0.391 0.036
Zou, 2022 0.400 0.192 0.652 0.442
Feng, 2024a 0.055 0.018 0.156 0.000
Feng, 2024b 0.001 0.000 1.000 0.662
Feng, 2024c 0.001 0.000 1.000 0.758
Feng, 2024f 0.001 0.000 0.941 0.162
Feng, 2024h 0.001 0.000 0.674 0.076
Ma, 2024 0.008 0.002 0.032 0.000
Galan-Puchades, 2024a 0.700 0.376 0.900 0.220
Galan-Puchades, 2024b 0.500 0.123 0.877 1.000

0.074 0.048 0.114 0.000

-1.00 -0.50

FIGURE 2 | Pooled molecular prevalence of G. duodenalis in rodents, with 95% confidence intervals, estimated using a random-effects model based

on included molecular studies.

thrive in both urban and agricultural settings. Rodent species
such as Rattus spp., Mus musculus, porcupines, squirrels, voles,
and chinchillas have been repeatedly linked to environmental
contamination and the zoonotic spread of various pathogens,
including G. duodenalis. These animals can serve either as

silent reservoirs or mechanical carriers, excreting cysts into the
environment and promoting transmission via direct interaction
or through the contamination of water supplies (Gherman et al.
2018; Helmy et al. 2018; Coppola et al. 2020; Asghari et al. 2022;
Rezaie et al. 2025).
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Study name Statistics with study removed Event rate (95% Cl) with study removed
Lower Upper

Point limit limit p-Value
Levecke, 2011 0.070 0.044 0.110 0.000 @
Veronesi, 2012 0.070 0.044 0.109 0.000 .
Fernandez-Alvarez, 2014a 0.073 0.046 0.114 0.000 .
Fernandez-Alvarez, 2014b 0.078 0.050 0.119 0.000 .
Zhao, 2015a 0.075  0.048  0.115 0.000 [ ]
Zhao, 2015b 0.075 0.047 0.115 0.000 .
Zhao, 2015c 0.076 0.048 0.116 0.000 .
Gherman, 2018 0.074 0.051 0.106 0.000 .
Deng, 2018 0.074 0.047 0.114 0.000 .
Helmy, 2018a 0.076 0.049 0.117 0.000 [ ]
Helmy, 2018b 0.075 0.048 0.115 0.000 .
Helmy, 2018c 0.075 0.048 0.114 0.000 .
Helmy, 2018d 0.075 0.048 0.116 0.000 .
Helmy, 2018e 0.076 0.049 0.117 0.000 .
Helmy, 2018f 0.079 0.051 0.120 0.000 [ )
Ma, 2018 0.072 0.045 0.114 0.000 .
Tan, 2019 0.077 0.049 0.118 0.000 .
Li, 2020a 0.073 0.047 0.114 0.000 .
Li, 2020b 0.072 0.045 0.112 0.000 ®
Li, 2020c 0.076 0.049 0.116 0.000 .
Coppola, 2020 0.071 0.045 0.111 0.000 .
Fehlberg, 2021a 0.077 0.050 0.119 0.000 .
Fehlberg, 2021b 0.074 0.047 0.114 0.000 .
Fehlberg, 2021c 0.075 0.048 0.114 0.000 [ ]
Fehlberg, 2021d 0.075 0.048 0.114 0.000 .
Fehlberg, 2021e 0.073 0.046 0.112 0.000 .
Fehlberg, 2021f 0.074 0.048 0.114 0.000 .
Fehlberg, 2021g 0.074 0.048 0.114 0.000 .
Fehlberg, 2021h 0.073 0.047 0.113 0.000 (]
Fehlberg, 2021i 0.074 0.048 0.114 0.000 .
Cervero-Arago, 2021 0.070 0.044 0.109 0.000 @
Galan-Puchades, 2021 0.069 0.044 0.108 0.000 .
Cui, 2021 0.072 0.045 0.113 0.000 @
Asghari, 2022a 0.076 0.049 0.117 0.000 [ ]
Asghari, 2022b 0.076 0.049 0.117 0.000 .
Asghari, 2022c 0.075 0.048 0.116 0.000 [ )
Xu, 2022a 0.079 0.051 0.120 0.000 .
Xu, 2022b 0.077 0.049 0.118 0.000 @
Wu, 2022 0.076 0.048 0.116 0.000 .
Wang, 2022a 0.076 0.049 0.117 0.000 .
Wang, 2022b 0.082 0.053 0.125 0.000 .
Wang, 2022c 0.076 0.049 0.116 0.000 .
Zou, 2022 0.070 0.045 0.108 0.000 ]
Feng, 2024a 0.075 0.048 0.116 0.000 .
Feng, 2024b 0.074  0.048 0.114 0.000 ()
Feng, 2024c 0.074 0.048 0.114 0.000 .
Feng, 2024f 0.075 0.048 0.115 0.000 .
Feng, 2024h 0.075 0.048 0.116 0.000 [ ]
Ma, 2024 0.079 0.051 0.121 0.000 .
Galan-Puchades, 2024a 0.068 0.044 0.106 0.000 .
Galan-Puchades, 2024b 0.071 0.045 0.109 0.000 .

0.074 0.048 0.114 0.000 .

-1.00 -0.50 0.00 0.50 1.00

FIGURE 3 | Sensitivity analysis of G. duodenalis molecular prevalence in rodents.

Managing diseases transmitted by rodents remains a significant
challenge, largely due to their rapid reproduction, behavioural
adaptability, and the difficulty of accessing many of their habitats,
especially in peri-urban slums, agricultural settings, and areas
where human environments intersect with natural ecosystems
(Parsons et al. 2020; Dalecky et al. 2024; Shehata et al. 2025).

Therefore, understanding the diversity of G. duodenalis geno-
types in rodents is critical for evaluating their role in zoonotic
transmission and informing effective public health interventions.
Hence, the primary objective of this study was to systematically
review and quantitatively synthesise the global prevalence and
genotypic distribution of G. duodenalis in rodent populations
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using molecular diagnostic methods. By focusing exclusively on
molecular studies that specifically identified G. duodenalis, this
study aimed to provide a comprehensive understanding of the
host-parasite relationship, zoonotic potential, and geographical
patterns of assemblages/sub-assemblages in rodents.

2 | Methods

2.1 | Ethics Approval

This study was approved by the Ethics Committee of Qazvin
University of Medical Sciences, Qazvin, Iran (Approval No.
IR.QUMS.REC.1403.329).

2.2 | Study Design

A global systematic review and meta-analysis were conducted
to determine the molecular prevalence and distribution of G.
duodenalis assemblages and sub-assemblages in rodent popu-
lations. The study adhered to the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) guidelines
(Moher et al. 2015).

2.3 | Search Procedure

An extensive literature search was performed in four inter-
national databases: Medline/PubMed, ProQuest, Scopus, and
Web of Science, up to 15 October 2024. Google Scholar was
utilised to identify relevant grey literature. The search strategy
employed the following keywords: ($Intestinal ParasitesH OR
$Parasitic InfectionsH OR HG. duodenalisH OR HG. lambliaH
OR $G. intestinalisH OR HGiardiasisH) AND ($HPrevalenceH OR
$HEpidemiologyH OR $HFrequencyH OR $HOccurrenceH) AND
($HGenotypeH OR HGenotypingH OR $HAssemblageH OR HSub-
assemblageH) AND ($HAnimalsH OR $HSmall MammalsH OR
HRodentsH). Additional keywords were applied where necessary,
and reference lists of relevant studies were manually screened
for further eligible articles. Duplicate records were automatically
removed using EndNote X7 software. Two independent reviewers
assessed each article for eligibility.

2.4 | Inclusion/Exclusion Criteria

Only original research articles that used molecular methods
(such as PCR-based techniques) for the detection and genotyp-
ing of G. duodenalis in rodents were included in this study.
To be eligible, studies had to report the prevalence and/or
genotypic characterisation (assemblages/sub-assemblages) of G.
duodenalis and provide sufficient data for inclusion in the meta-
analysis. Studies based solely on microscopic, immunological,
or serological techniques without molecular confirmation were
excluded. Additionally, studies that focused on Giardia species
other than G. duodenalis were excluded, even if they used
molecular techniques. In molecular studies/datasets involving
multiple Giardia species, only data related specifically to G.
duodenalis were considered. Studies that examined non-rodent
hosts or presented data on mixed host species without separate

analysis for rodents were also excluded. Review articles, case
reports, conference abstracts, and articles lacking sufficient data
for molecular prevalence estimation were not included in this
study.

2.5 | Quality Assessment and Data Extraction

The quality of the included studies was evaluated using the
Joanna Briggs Institute (JBI) Critical Appraisal Checklist for
prevalence studies (Munn et al. 2014). Articles with scores of 4-6
and > 7 were categorised as medium- and high-quality studies,
respectively. Key information was extracted independently by
two researchers and cross-validated by other team members.
Extracted data included the first author’s surname, rodent
species, assemblage/sub-assemblage types, quality assessment
scores, year of publication, continent, country, World Health
Organization (WHO) region, total sample size, and the number
of positive samples.

2.6 | Meta-Analysis

Statistical analyses were conducted using Comprehensive Meta-
Analysis (CMA) software, version 3. A random-effects model
was applied to calculate the pooled molecular prevalence and
corresponding 95% confidence intervals (CIs) for G. duodenalis
in rodents. Subgroup analyses were performed based on sample
size, continent, country, WHO region, and rodent species. Forest
plots were used to present the pooled molecular prevalence along
with 95% CIs. Heterogeneity across studies was quantified using
the I? statistic, with values interpreted as low (< 25%), moderate
(25-50%), or high (> 50%) heterogeneity. Sensitivity analyses
were carried out to assess the robustness of the findings by
sequentially excluding individual studies. The genetic diversity
of G. duodenalis and the distribution of its assemblages and
sub-assemblages were reported descriptively.

3 | Results

3.1 | Included Articles

Expert researchers conducted a thorough search across four inter-
national databases, yielding 8967 initial records. After removing
duplicates and reviewing the 5128 remaining papers, 31 articles
were selected. A more detailed and meticulous review resulted
in the exclusion of eight additional studies, leaving 23 relevant
papers (54 datasets) that met the inclusion criteria for this study
(Levecke et al. 2011; Veronesi et al. 2012; Fernandez-Alvarez et al.
2014; Zhao et al. 2015; Gherman et al. 2018; Helmy et al. 2018; Ma
et al. 2018; Ma et al. 2024; Deng et al. 2018; Tan et al. 2019; Li et al.
2020; Coppola et al. 2020; Cervero-Aragé et al. 2021; Cui et al. 2021;
Fehlberg et al. 2021; Galdn-Puchades et al. 2021; Galan-Puchades
et al. 2023; Asghari et al. 2022; Wang et al. 2022; Wu et al. 2022;
Xu et al. 2022; Zou et al. 2022; Feng et al. 2024) (Figure 1). Studies
were excluded due to incomplete or ambiguous results, focus on
Giardia species other than G. duodenalis, or exclusive focus on G.
duodenalis-positive cases.
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TABLE 1 | Subgroup analysis of G. duodenalis molecular prevalence in rodents by publication year, continent, WHO region, country, sample size
and rodent species.

Subgroup Prevalence % (95% Heterogeneity
variable CI) Q) df (Q) 12 (%) p-value
Publication year
2011-2014 13.1(5.3-29.1) 34.4 3 91.3 p <0.05
2015-2019 5.3 (1.8-14.6) 340.7 12 96.5 p <0.05
2020-2024 7.6 (4.5-12.6) 207.3 33 84.1 p <0.05
Continent
Asia 5.1(3.4-7.5) 111 25 77.5 p <0.05
Europe 17.9 (9.8-30.5) 200.3 15 92.5 p <0.05
South America 6.7 (2.5-16.9) 5.4 8 0 p > 0.05
WHO region
AMR 6.7 (2.5-16.9) 5.4 8 0 p>0.05
EMR 3.5(1.3-9) 0.5 2 0 p>0.05
EUR 17.9 (9.8-30.5) 200.3 15 92.5 p <0.05
WPR 5.3 (3.5-8) 106.9 22 79.4 p<0.05
Country
Austria 34 (22.3-48) 0 p>0.05
Belgium 26.2 (17.7-36.9) 0 0 0 p>0.05
Brazil 6.7 (2.5-16.9) 5.4 0 p>0.05
China? 5.5(3.6-8.4) 101.8 21 79.4 p <0.05
Germany 1.4 (0.6-3.2) 2 5 0 p > 0.05
Iran 3.5(1.3-9) 0.5 2 0 p>0.05
Italy 27.7 (21.2-35.3) 0.8 1 0 p>0.05
Malaysia 3(1.1-7.7) 0 0 0 p>0.05
Romania 55.7 (50.4-60.9) 0 0 0 p > 0.05
Spain 24 (9.1-49.9) 26 4 90.6 p<0.05
Sample size
<100 11.2 (6.7-18.1) 103.7 32 69.1 p <0.05
> 100 5.3(2.7-10.3) 509.8 17 96.7 p <0.05
Rodent species
Chinchilla 36.9 (19.4-58.8) 35 2 94.3 p <0.05
Guinea pig 0.1(0-39.1) 0 0 0 p > 0.05
Mouse 1.7 (0.7-3.9) 12 10 16.6 p>0.05
Porcupine 23.1(13.6-36.4) 0 0 0 p > 0.05
Rat 11.9 (8.1-17.2) 115.6 23 80.1 p <0.05
Rodent spp. 12.5 (0.7-74.4) 17.6 1 94.3 p <0.05
Squirrel 2.2(0.6-7.3) 26 4 84.6 p<0.05
Vole 1.1(0.4-3) 13 3 0 p>0.05

#World Health Organization (WHO).

bRegion of the Americas (AMR).

“Eastern Mediterranean Region (EMR).

dEuropean Region (EUR).

¢Western Pacific Region (WPR).

‘Due to CMA software limitations, a prevalence rate of 0.01% was used instead of 0% in calculations.
20f the 25 datasets from China, three were excluded from the meta-analysis due to single-sample size.
hRodents with unspecified species or ambiguous information were included in the group of rodent spp.
iChipmunk and marmot were included in the group of squirrels.
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Group by

Study name

Continent

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Asia

Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe

South America
South America
South America
South America
South America
South America
South America
South America
South America
South America

Zhao, 2015a
Zhao, 2015b
Zhao, 2015c
Deng, 2018
Ma, 2018

Tan, 2019

Li, 2020a

Li, 2020b

Li, 2020c

Cui, 2021
Asghari, 2022a
Asghari, 2022b
Asghari, 2022c
Xu, 2022a

Xu, 2022b
Wu, 2022
Wang, 2022a
Wang, 2022b
Wang, 2022c¢
Zou, 2022
Feng, 2024a
Feng, 2024b
Feng, 2024c
Feng, 2024f
Feng, 2024h
Ma, 2024

Levecke, 2011

Veronesi, 2012
Fernandez-Alvarez, 2014a
Fernandez-Alvarez, 2014b
Gherman, 2018

Helmy, 2018a

Helmy, 2018b

Helmy, 2018c

Helmy, 2018d

Helmy, 2018e

Helmy, 2018f

Coppola, 2020
Cervero-Arago, 2021
Galan-Puchades, 2021
Galan-Puchades, 2024a
Galan-Puchades, 2024b

Fehlberg, 2021a
Fehlberg, 2021b
Fehlberg, 2021c
Fehlberg, 2021d
Fehlberg, 2021e
Fehlberg, 2021f
Fehlberg, 2021g
Fehlberg, 2021h
Fehlberg, 2021i

Statistics for each study Event rate and 95% CI

Event Lower Upper

rate limit limit p-Value
0.061 0.015 0.213 0.000
0.066 0.037 0.115 0.000
0.032  0.004 0.196 0.001
0.086 0.058 0.125 0.000
0.108 0.083 0.139 0.000
0.030 0.011 0.077 0.000
0.096 0.052 0.169 0.000
0.152  0.103 0.218 0.000
0.001  0.000 0.331 0.029
0.123  0.091 0.165 0.000
0.025 0.004 0.157 0.000
0.025 0.004 0.157 0.000
0.050 0.013 0.179 0.000
0.015 0.007 0.033 0.000
0.020 0.005 0.077 0.000
0.047  0.025 0.088 0.000
0.001  0.000 0.232 0.018
0.001  0.000 0.007 0.000
0.001  0.000 0.391 0.036
0.400 0.192 0.652 0.442
0.055 0.018 0.156 0.000
0.001  0.000 1.000 0.662
0.001  0.000 1.000 0.758
0.001 0.000 0.941 0.162
0.001 0.000 0.674 0.076
0.008 0.002 0.032 0.000
0.051 0.034 0.075 0.000
0.262 0.177 0.369 0.000
0.298 0.218 0.393 0.000
0.103  0.059 0.173 0.000
0.018 0.006 0.055 0.000
0.557 0.504 0.609 0.036
0.028 0.004 0.177 0.001
0.001  0.000 0.959 0.178
0.001  0.000 1.000 0.513
0.001 0.000 0.750 0.091
0.001 0.000 0.287 0.024
0.013  0.005 0.034 0.000
0.231 0.136 0.364 0.000
0.340 0.223  0.480 0.026
0.350 0.263  0.448 0.003
0.700 0.376  0.900 0.220
0.500 0.123  0.877 1.000
0.179  0.098 0.305 0.000
0.012 0.002 0.082 0.000
0.077 0.011 0.391 0.017
0.001  0.000 1.000 0.469
0.001  0.000 1.000 0.513
0.200 0.027 0.691 0.215
0.001 0.000 1.000 0.758
0.001  0.000 1.000 0.662
0.142  0.019 0.580 0.097
0.001 0.000 1.000 0.662
0.067 0.025 0.169 0.000

-1.00 -0.50 0.00 0.50 1.00

FIGURE 4 | Pooled molecular prevalence of G. duodenalis in rodents across continents, with 95% confidence intervals, estimated using a random-

effects model.

3.2 | Qualitative and Quantitative Features of the

Selected Articles

This systematic review encompassed 23 studies featuring 54
datasets covering the years 2011-2024. The datasets included 26

from rats, 11 from mice, six from squirrels, four from voles,
three from chinchillas, two from unidentified rodent species, and
one dataset each from guinea pigs and porcupines. The datasets
included 25 related to China, nine to Brazil, six to Germany, five to
Spain, three to Iran, 2 to Italy, and one each to Austria, Belgium,
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Group by

Study name

Rodent species

Chinchilla
Chinchilla
Chinchilla
Chinchilla
Guinea pig
Guinea pig
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Porcupine
Porcupine

Rodent spp.
Rodent spp.
Rodent spp.
Squirrel
Squirrel
Squirrel
Squirrel
Squirrel
Squirrel
Vole

Vole

Vole

Vole

Vole

Levecke, 2011
Veronesi, 2012
Gherman, 2018

Wang, 2022c

Fernandez-Alvarez, 2014b
Zhao, 2015c¢
Helmy, 2018a
Helmy, 2018b
Helmy, 2018c
Fehlberg, 2021b
Fehlberg, 2021c
Fehlberg, 2021d
Fehlberg, 2021f
Asghari, 2022a
Wang, 2022b

Coppola, 2020

Fernandez-Alvarez, 2014a
Zhao, 2015a

Zhao, 2015b

Ma, 2018

Li, 2020a

Li, 2020b

Li, 2020c

Fehlberg, 2021a
Fehlberg, 2021e
Fehlberg, 2021g
Fehlberg, 2021h
Fehlberg, 2021i
Cervero-Arago, 2021
Galan-Puchades, 2021
Cui, 2021

Asghari, 2022b
Asghari, 2022¢

Wu, 2022

Wang, 2022a

Feng, 2024a

Feng, 2024b

Feng, 2024c
Galan-Puchades, 2024a
Galan-Puchades, 2024b

Tan, 2019
Zou, 2022

Deng, 2018
Xu, 2022a
Xu, 2022b
Feng, 2024h
Ma, 2024

Helmy, 2018d
Helmy, 2018e
Helmy, 2018f
Feng, 2024f

Statistics for each study

Event
rate

0.262
0.298
0.557
0.369
0.001
0.001
0.018
0.032
0.028
0.001
0.001
0.077
0.001
0.001
0.001
0.025
0.001
0.017
0.231
0.231
0.103
0.061
0.066
0.108
0.096
0.152
0.001
0.012
0.200
0.001
0.142
0.001
0.340
0.350
0.123
0.025
0.050
0.047
0.001
0.055
0.001
0.001
0.700
0.500
0.119
0.030
0.400
0.125
0.086
0.015
0.020
0.001
0.008
0.022
0.001
0.001
0.013
0.001
0.011

Lower
limit
0.177
0.218
0.504
0.194
0.000
0.000
0.006
0.004
0.004
0.000
0.000
0.011
0.000
0.000
0.000
0.004
0.000
0.007
0.136
0.136
0.059
0.015
0.037
0.083
0.052
0.103
0.000
0.002
0.027
0.000
0.019
0.000
0.223
0.263
0.091
0.004
0.013
0.025
0.000
0.018
0.000
0.000
0.376
0.123
0.081
0.011
0.192
0.007
0.058
0.007
0.005
0.000
0.002
0.006
0.000
0.000
0.005
0.000
0.004

Upper
limit
0.369
0.393
0.609
0.588
0.391
0.391
0.055
0.196
0.177
0.959
1.000
0.391
1.000
1.000
1.000
0.157
0.007
0.039
0.364
0.364
0.173
0.213
0.115
0.139
0.169
0.218
0.331
0.082
0.691
1.000
0.580
1.000
0.480
0.448
0.165
0.157
0.179
0.088
0.232
0.156
1.000
1.000
0.900
0.877
0.172
0.077
0.652
0.744
0.125
0.033
0.077
0.674
0.032
0.073
0.750
0.287
0.034
0.941
0.030

Event rate and 95% CI

p-Value

0.000
0.000
0.036
0.238
0.036
0.036
0.000
0.001
0.001
0.178
0.513
0.017
0.469
0.513
0.758
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.029
0.000
0.215
0.662
0.097
0.662
0.026
0.003
0.000
0.000
0.000
0.000
0.018
0.000
0.662
0.758
0.220
1.000
0.000
0.000
0.442
0.205
0.000
0.000
0.000
0.076
0.000
0.000
0.091
0.024
0.000
0.162
0.000

-1.00 -0.50 0.00 0.50 1.00

FIGURE 5 |
model.

Malaysia, and Romania. Sample sizes ranged from 1 to 1027 rodent
samples, but studies with a sample size of one were excluded from
the statistical analysis. Quality assessment with the JBI checklist
indicated that nine papers were of high quality (> 6 points) and

14 had moderate quality (4-6 points) (Supplementary Table 1).

Pooled molecular prevalence of G. duodenalis in rodents by species, with 95% confidence intervals, estimated using a random-effects

3.3 | Pooled Molecular Prevalence of G. duodenalis
in Rodents

The pooled molecular prevalence of G. duodenalis in rodents
was 7.4% (95% CI: 4.8-11.4%), showing substantial heterogeneity
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among included studies (Q = 618.2, P = 91.9%, p < 0.001)
(Figure 2).

3.4 | Sensitivity Analysis

The sensitivity analysis revealed that removing individual
papers/datasets on G. duodenalis infection rates in rodents did not
significantly alter the final molecular prevalence (Figure 3).

3.5 | Pooled Molecular Prevalence of G. duodenalis
in Rodents Based on Evaluated Subgroups

The subgroup analysis outcomes are presented in Table 1
and Supplementary Figures 1-4. In brief, the highest pooled
molecular prevalence of G. duodenalis in rodents was observed
between 2011 and 2014 at 13.1% (95% CI: 5.3-29.1%), while the
lowest was reported from 2015 to 2019 at 5.3% (95% CI: 1.8-
14.6%). Geographically, the highest pooled molecular prevalence
occurred in rodents from Europe and the EUR WHO region,
reaching 17.9% (95% CI: 9.8-30.5%) (Figure 4). Among evaluated
countries, Romania (55.7%), Austria (34%), Italy (27.7%), Belgium
(26.2%), and Spain (24%) reported the highest infection rates.
Studies with fewer than 100 samples showed a higher prevalence
(11.2%, 95% CI: 6.7-18.1%) compared to those with larger sample
sizes (5.3%, 95% CI: 2.7-10.3%). Species-specific data revealed
the highest infection rates in chinchillas (36.9%) and porcupines
(23.1%), though these findings are based on very limited datasets
(Figure 5).

3.6 | Assemblage/Sub-Assemblage Distribution of
G. duodenalis in Rodents

Among the eight reported G. duodenalis assemblages (A-H), six
assemblages (A-E and G) and four sub-assemblages (AI, AII, BIII,
and BIV) were found in rodents. Zoonotic assemblage B and
rodent-specific assemblage G were the most frequently detected
in rodents (Table 2 and Table 3).

3.7 | Assemblages Distribution of G. duodenalis by
Country and Rodent Species

In brief, China contributed the largest number of molecular
datasets (n = 25) and rodent samples (n = 4,009). The greatest
genetic diversity was observed in China (A, B, E, G) and Belgium
(A, B, C, E), with assemblage B being the most prevalent. Assem-
blage D was found exclusively in Romania, while assemblage C
was reported from Belgium and Italy. The highest assemblage
diversity was observed in chinchillas (five: A-E), squirrels (four:
A, B, E, G), and rats (three: A, B, G) (Table 3).

3.8 | Assemblages Distribution of G. duodenalis by
Continent

In brief, assemblages C, D, G, and most occurrences of E, B, and
A were reported from Europe; C and D were absent in Asia.
In contrast, most reports of assemblage G originated from Asia,

while only assemblage A was identified in South America (Brazil)
(Figure 6).

4 | Discussion

Prevalence-based evaluations and the distribution of G. duode-
nalis assemblages/sub-assemblages in rodents are essential for
understanding the epidemiology of G. duodenalis, a protozoan
parasite that affects both animal and human health (Helmy et al.
2018; Li et al. 2023). Hence, this systematic review and meta-
analysis aimed to determine the global molecular prevalence
and genotypic distribution of G. duodenalis in rodents, based
exclusively on studies using molecular diagnostic techniques.

Global meta-analyses on the occurrence of G. duodenalis in
animals are scarce. However, the prevalence of this parasitic
protozoan has been reported as 22% (95% CI: 17-28%) in cattle
(Taghipour et al. 2022), 15.2% (95% CI: 13.8-16.7%) in dogs, 12%
(95% CI: 9.2-15.3%) in cats (Bouzid et al. 2015), and 9.1% (95% CI:
5.6-14.3%) in pigs (Asghari et al. 2023). Despite variations in study
methods, geographical locations, and sample sizes, the reported
prevalence of 7.4% of G. duodenalis in rodents is relatively low
compared to other animals. The sensitivity analysis revealed no
outlier data among the included studies that could significantly
impact the final molecular prevalence of G. duodenalis in rodents.
This finding underscores the robustness of the analysis and
reinforces the reliability of the estimated prevalence rates.

Analysis of subgroup prevalence revealed no distinct trend in
G. duodenalis infection rates among rodents over the years. The
highest molecular prevalence was recorded between 2011 and
2014 at 13.1% (95% CI. 5.3-29.1%), while the lowest occurred
from 2015 to 2019 at 5.3% (95% CI: 1.8-14.6%). Temporal shifts
in infection rates may correlate with environmental factors and
changes in rodent habitats. Rodents in Europe and the EUR
WHO region exhibited the highest pooled molecular prevalence
at 17.9% (95% CI: 9.8-30.5%). Notably, countries such as Romania
(55.7%, 95% CI: 50.4-60.9%), Austria (34%, 95% CI: 22.3-48%),
Italy (27.7%, 95% CI: 21.2-35.3%), Belgium (26.2%, 95% CI: 17.7-
36.9%), and Spain (24%, 95% CI: 9.1-49.9%) reported the highest
infection rates of G. duodenalis in rodents. European countries
showed a higher pooled molecular prevalence of G. duodenalis in
rodents, suggesting that varying ecological conditions and public
health practices may affect its spread among rodent populations.
Of note, most of these findings are derived from single studies
or a limited number of investigations; therefore, they should
be interpreted with caution. Based on sample size, the pooled
molecular prevalence of G. duodenalis in rodents was 5.3% (95%
CI: 2.7-10.3%) in studies with more than 100 samples, compared
to 11.2% (95% CI. 6.7-18.1%) in studies with fewer than 100
samples. This difference in prevalence rates suggests that sample
size has a significant impact on the observed prevalence. Larger
sample sizes tend to provide more stable and reliable estimates,
reducing the influence of random variation. The narrower con-
fidence interval in studies with sample sizes over 100 further
supports this notion. The higher molecular prevalence observed
in smaller studies might be due to overestimation resulting from
chance or specific characteristics of the limited number of rodents
examined.
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(Continued)

TABLE 2

Infected Prevalence Sub-
assemblages

Total
no.

Time
tested

Assemblages

(%)

no.

Country

Host’s scientific name

Host’s common name

Author, year

2018-2021 China 66
2017-2019 243

2021-2023
2021-2023

Spermophilus undulatus

Long-tailed ground squirrel

Feng, 2024h
Ma, 2024

0.8

China

Marmota himalayana

Himalayan marmot

70
50

Spain

Brown rat Rattus norvegicus

Galan-Puchades, 2024a

4

Spain

Rattus rattus

Black rat

Galan-Puchades, 2024b

2This table includes only data related to G. duodenalis as confirmed in each study. For studies that examined multiple rodent species or datasets, only those in which G. duodenalis was specifically identified (typically through

molecular methods) were included. If Giardia spp. was reported without species-level confirmation in certain rodent species or datasets within the same study, those data were excluded from this table/study.

®Some studies have performed molecular analysis on a portion of microscopically positive cases, rather than all samples. Hence, molecular prevalence was calculated based on the number of positive samples using only the

molecular method.

CDue to CMA software limitations, a prevalence rate of 0.01% was used instead of 0% in calculations, and three datasets from China with a total sample size of one were excluded from the analysis.

G. duodenalis showed the highest molecular prevalence in chin-
chillas (36.9%) and porcupines (23.1%). However, these findings
are based on very limited data (three studies for chinchillas
and one for porcupines), preventing any broader statistical or
epidemiological conclusions. It remains unclear whether this
reflects a true epidemiological trend or simply a sampling artefact.
Some studies included only one or a few rodents per species,
whereas others had sample sizes exceeding 1000 specimens,
notably in China, which also reported the greatest assemblage
diversity. This likely reflects a sampling bias, rather than true
geographic variation in genotypic distribution.

Notably, of the eight reported G. duodenalis assemblages (A-H)
(Wang et al. 2014; Ryan et al. 2021), six assemblages (A-E and
G) and four sub-assemblages (AI, AIl, BIII, and BIV) have been
found in rodents. Assemblage B and rodent-specific assemblage
G were the most frequently detected in rodents. Notably, the
highest assemblage diversity was observed in chinchillas (five:
A-E), squirrels (four: A, B, E, G), and rats (three: A, B, G).
Sub-assemblage AI was reported in both humans and animals,
while sub-assemblage AII is primarily associated with humans.
Sub-assemblages BIII and BIV were reported in humans as well
as companion and wild animals (Mbae et al. 2016; Pipikova
et al. 2020). Two of these assemblages, A and B, have significant
zoonotic transmission potential and can lead to human infections
and symptoms (Zajaczkowski et al. 2021). Although, there have
been sporadic reports of human infection with other assemblages
(Soliman et al. 2011; Zahedi et al. 2017; Pipikova et al. 2020).
The zoonotic nature of assemblages A and B highlights the
importance of understanding transmission dynamics in both
rodent populations and human interactions with these ani-
mals. Surveillance efforts are crucial in regions where these
assemblages are prevalent, as they can inform public health
strategies aimed at reducing the risk of human infections. In
addition, environmental factors such as habitat destruction and
climate change may influence the distribution of G. duodenalis
assemblages in wildlife, thereby affecting their potential to spill
over into human populations. Of note, some analyses in this
study rely on a limited number of studies/datasets, necessitating
cautious interpretation.

This systematic review and meta-analysis revealed considerable
geographic variation in the prevalence and genotypic diversity
of G. duodenalis assemblages among rodent populations across
different countries. China, with the largest number of datasets
(25) and the highest sample size (4,009 rodents), reported the
greatest assemblage diversity (A, B, E, and G), while Belgium,
despite having only a single study with a limited number of
samples, also exhibited notable genetic diversity (A, B, C, and
E). These findings suggest that the observed diversity in China
may be influenced more by sampling intensity than by actual
ecological variation, highlighting a potential sampling bias. In
contrast, the unexpected diversity reported from countries with
minimal data, such as Belgium, raises questions about the local
transmission dynamics and host-specific factors contributing to
assemblage distribution. Assemblage B was the most frequently
detected across most countries, although its prevalence varied
widely, possibly reflecting differences in ecological conditions,
rodent species, or methodological approaches. The occurrence
of unique assemblages in specific regions (e.g., D in Romania,
C in Belgium and Italy) further emphasises the need for more
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TABLE 3 | Assemblage distribution of G. duodenalis in rodents by countries and rodent species.

Reported assemblages (no.)

Variables Dataset no. Total samples (no.) Infected samples (no.) A B C D E G ND
Countries

Austria 1 50 17 9 - - - - 3 5
Belgium 1 80 21 1 18 15 - 2 - -
Brazil 9 136 4 4 - - - - - -
China 25 4,009 189 19 94 - - 1 69 6
Germany 6 550 5 3 2 - - - - -
Iran 3 120 4 - 1 - - - 3 -
Italy 2 156 43 2 41 2 - - - -
Malaysia 1 134 4 - 1 - - - - 3
Romania 1 341 190 - 151 - 33 6 - -
Spain 5 395 59 - 1 - - - 14 44
Total no. 54 5,971 536 48 309 17 33 9 89 58
Species

Chinchilla 3 525 242 11 198 17 33 8 - -
Guinea pig 1 92 0 - - - - - - -
Mouse 1 1,380 7 2 - - - - 5 -
Porcupine 1 52 12 2 12 - - - - -
Rat 26 2,177 227 15 90 - - - 73 49
Rodent spp. 2 149 10 - 1 - - - - 9
Squirrel 6 1,087 34 16 6 - - 1 1 -
Vole 4 509 4 2 2 - - - - -
Total no. 54 5,971 536 48 309 17 33 9 89 58

2The plateau zokor was placed in the group of rats.

bRodents with unspecified species or ambiguous information were included in the group of rodent spp.

¢Chipmunk and marmot were included in the group of squirrels.
dND, Not determined.

€Of the 25 datasets from China, three were excluded from the meta-analysis due to single-sample size.
fWhen the number of assemblages exceeds the number of infected cases, mixed infections are present. Conversely, when the number of assemblages is less than
the number of infected cases, this reflects either limited access to the full text or challenges in genotyping/sequencing.

balanced and comprehensive sampling efforts to better under-
stand the global distribution and epidemiological significance of
G. duodenalis in rodent hosts.

Analysis of G. duodenalis assemblages across continents showed
that assemblages C, D, G, and most occurrences of E, B, and
A were reported from Europe; C and D were absent in Asia.
In contrast, most reports of assemblage G originated from Asia,
while only assemblage A was identified in South America (Brazil)
(Fehlberg et al. 2021). Overall, the lack of data from North
America, Oceania, and Africa indicates a significant gap in
our understanding of G. duodenalis genetic diversity worldwide.
Assemblages C and D, typically associated with canids (Adell-
Aledén et al. 2018), were identified in rodents from Europe but not
from Asia. This geographic discrepancy may stem from regional
differences in host species, environmental exposure, or diagnostic
methodologies, but more plausibly reflects gaps in sampling
rather than biological absence. Interestingly, most assemblage
types (excluding the feline-specific F and the pinniped-associated

H) were identified in rodents, yet the majority of studies did not
report sub-assemblage level data, which is essential for assessing
zoonotic potential more precisely. Overall, much remains to be
explored regarding the epidemiology and genetic diversity of G.
duodenalis in rodents. As the number of studies increases across
various geographic regions and rodent species, shifts in infection
prevalence, changes in the distribution of assemblages and sub-
assemblages, and even the identification of novel assemblages,
such as assemblage F, may be observed.

The health status of the sampled rodents was rarely reported,
and there was little to no information on whether rodents were
sampled randomly or due to clinical suspicion. This under-
mines the accuracy of reported prevalence rates and limits the
ecological interpretation of the findings. Similarly, the habitat
characteristics, immunological status, and interaction frequency
with human populations were generally missing from the studies
reviewed. These are critical factors in evaluating the real-world
risk of zoonotic transmission.
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Assemblage distribution of G. duodenalis in rodents by continents. The numbers in the circle centres represent the total count of each

assemblage isolated from rodents, while the percentages around the circles indicate the prevalence rate of each assemblage per continent.

Preventive measures should focus on standardised monitoring of
rodent populations in urban and peri-urban areas, particularly
where human-animal interactions are frequent. Environmental
surveillance, sanitation improvement, and rodent population
control could reduce the potential risk of cyst contamination in
water and food sources.

In light of the evidence, the role of rodents in the transmis-
sion cycle of human giardiasis should be considered limited
but not negligible. Their capacity to act as reservoirs may be
context-dependent, influenced by local ecological and social
determinants. However, current data are insufficient to support
any broad claims regarding rodents as a significant source of
human infection.

5 | Conclusion

While the presence of zoonotic G. duodenalis assemblages in
rodents is of scientific interest, the low overall prevalence, lack of
consistent sampling protocols, unknown health status of hosts,
and insufficient ecological context preclude a definitive conclu-
sion about their significance as reservoirs for human infection.
This review should be considered a preliminary exploration, a
‘tip of the iceberg’ of the potential role of rodents in giardiasis
epidemiology. Future research should incorporate well-designed
epidemiological studies with large and ecologically diverse rodent
populations, include randomised and stratified sampling, and
utilise sub-assemblage level genotyping. Stakeholders, including
public health authorities, environmental agencies, and zoonotic
disease surveillance units, should prioritise integrated One

Health approaches, promoting cross-sectoral collaboration to
assess and mitigate the risks posed by wildlife reservoirs such as
rodents.
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